
Theoretical Computer Science 610 (2016) 78–90

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Prefix-free languages: Left and right quotient and reversal ✩

Jozef Jirásek a,1, Galina Jirásková b,∗,2, Monika Krausová a, Peter Mlynárčik b,2,
Juraj Šebej a,1

a Institute of Computer Science, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia
b Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01 Košice, Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 November 2014
Received in revised form 10 August 2015
Accepted 24 August 2015
Available online 9 September 2015

Keywords:
Finite automata
Prefix-free languages
Left and right quotient
Reversal
State complexity

We investigate the left and right quotient, and the reversal operation on the class of prefix-
free regular languages. We get the tight upper bounds 2n−1, n − 1, and 2n−2 + 1 on the
state complexity of these three operations, respectively. To prove the tightness of these
bounds, we use an (n − 1)-letter alphabet for left quotient, a binary alphabet for right
quotient, and a ternary alphabet for reversal. We also prove that these bounds cannot be
met using languages defined over any smaller alphabet. For left quotient, we prove that the
tight bound for an (n − 2)-letter alphabet is 2n−1 − 1, and we provide exponential lower
bounds for every smaller alphabet, except for the unary case. For the reversal operation
on binary prefix-free languages, we get 2n−2 − 7 lower bound in the case of n mod 3 �= 2,
and 2n−2 − 15 lower bound in the remaining cases. We conjecture that our lower bounds
on the state complexity of reversal on binary prefix-free languages are tight if n ≥ 12.
Our experimental results support this conjecture.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

A language is prefix-free if it does not contain two distinct strings one of which is a prefix of the other. Prefix-free
languages are used in coding theory. In prefix codes, like variable-length Huffman codes or country calling codes, there
is no codeword that is a proper prefix of any other codeword. With such a code, a receiver can identify each codeword
without any special marker between words.

Motivated by prefix codes, the class of prefix-free regular languages has been recently investigated. It is known that
every minimal deterministic automaton recognizing a prefix-free regular language must have exactly one final state, from
which all transitions go to a dead state. Using this property, tight upper bounds on the state complexity of basic operations
such as union, intersection, concatenation, star, and reversal have been obtained in [7] and strengthened in [11,13]; recall
that the state complexity of an operation on regular languages is the maximal state complexity of the language resulting
from the operation as a function of the state complexities of the arguments [2,5,6].

✩ This work was presented at the DCFS 2014 workshop held in Turku, Finland on August 5–8, 2014, and its extended abstract appeared in the workshop
proceedings: H. Jürgensen, J. Karhumäki, and A. Okhotin (Eds.), Descriptional Complexity of Formal Systems, LNCS 8614, pp. 210—221.

* Corresponding author.
E-mail addresses: jozef.jirasek@upjs.sk (J. Jirásek), jiraskov@saske.sk (G. Jirásková), mon.krausova@gmail.com (M. Krausová), mlynarcik1972@gmail.com

(P. Mlynárčik), juraj.sebej@gmail.com (J. Šebej).
1 Research supported by grant VEGA 1/0142/15.
2 Research supported by grant VEGA 2/0084/15.

http://dx.doi.org/10.1016/j.tcs.2015.08.031
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.08.031
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jozef.jirasek@upjs.sk
mailto:jiraskov@saske.sk
mailto:mon.krausova@gmail.com
mailto:mlynarcik1972@gmail.com
mailto:juraj.sebej@gmail.com
http://dx.doi.org/10.1016/j.tcs.2015.08.031
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.08.031&domain=pdf

J. Jirásek et al. / Theoretical Computer Science 610 (2016) 78–90 79

The nondeterministic state complexity of basic regular operations has been investigated in [8,11], while the complexity
of combined operations on prefix-free regular languages has been studied in [9].

In [10] it has been shown that the tight bound on the state complexity of cyclic shift on prefix-free languages is given
by the function (2n − 3)n−2. To prove the tightness of this bound, the authors used a quaternary alphabet, and they proved
that this bound cannot be met by any ternary language. On the other hand, they showed that the lower bounds in the
binary and ternary cases are still exponential.

In this paper, we investigate the left and right quotient, and the reversal operations on the class of prefix-free languages.
In the case of the left quotient operation, defined to be K\L = {x | wx ∈ L and w ∈ K }, we get an upper bound 2n−1 on
its state complexity, and we prove that it is tight for an alphabet with at least n − 1 symbols. We also show that this
bound cannot be met using any smaller alphabet. Then we prove that the tight upper bound in the case of an (n − 2)-letter
alphabet is smaller just by one. Finally, we provide exponential lower bounds for every smaller alphabet, except for the
unary case, where the tight upper bound is 1 if n < m, and it is n − m + 2 otherwise.

Then we study the right quotient operation, defined to be L/K = {x | xw ∈ L, w ∈ K }. We get an upper bound n − 1 on
its state complexity on prefix-free languages, and we prove that it is tight for an alphabet with at least two symbols. Recall
that in the general case of regular languages, the tight bound is n [22].

Finally, we examine the reversal operation defined to be LR = {w R | w ∈ L}, where w R stands for the string w written
backwards. The operation preserves regularity as shown already by Rabin and Scott in 1959 [17]: A nondeterministic finite
automaton for the reverse of a regular language can be obtained from an automaton recognizing the given language by
swapping the role of initial and final states, and by reversing all the transitions. This gives the upper bound 2n on the state
complexity of reversal on regular languages. Its tightness in the ternary case has been pointed out already by Mirkin [16],
who noticed that a ternary Lupanov’s witness automaton for determinization [15] is a reverse of a deterministic automaton.
The binary witness languages meeting the upper bound 2n have been presented in [12,14,18,19].

In the case of prefix-free languages, the upper bound on the state complexity of reversal is 2n−2 + 1 [7], and in the first
part of Section 5 we present a simple proof of its tightness in the ternary case. Then we show that this upper bound cannot
be met by any binary language. In the case of binary prefix-free languages, we get the lower bound 2n−2 − 7 whenever
n mod 3 �= 2, and the lower bound 2n−2 − 15 otherwise. Thus our lower bounds on the state complexity of reversal on
binary prefix-free languages are smaller just by a constant factor than the upper bound 2n−2.

We also did some computations concerning the state complexity of the reversal operation on binary prefix-free lan-
guages. While for some small values of n our lower bounds can be exceeded, starting with n = 12, we were not able to
find any binary prefix-free language exceeding our lower bound 2n−2 − 7 in the case of n mod 3 �= 2, and our lower bound
2n−2 − 15 in the remaining cases. We strongly conjecture that these lower bounds are tight if n ≥ 12.

2. Preliminaries

In this section, we recall some basic definitions and preliminary results. For further details and all unexplained notions,
the reader may refer to [20,21].

Let � be a finite alphabet and �∗ the set of all strings over the alphabet � including the empty string ε. A language is
any subset of �∗ . The cardinality of a finite set A is denoted by |A|, and its power-set by 2A .

A nondeterministic finite automaton (NFA) is a quintuple A = (Q , �, δ, I, F), where Q is a finite set of states, � is a finite
alphabet, δ : Q × � → 2Q is the transition function which is extended to the domain 2Q × �∗ in the natural way, I ⊆ Q
is the set of initial states, and F ⊆ Q is the set of final states. The language accepted by A is the set L(A) = {w ∈ �∗ |
δ(I, w) ∩ F �= ∅}.

An NFA A is deterministic (DFA) (and complete) if |I| = 1 and |δ(q, a)| = 1 for each q in Q and each a in �. In such a
case, we write q · a = q′ instead of δ(q, a) = {q′}. A non-final state q is a dead state if q · a = q for each a in �.

The state complexity of a regular language L, sc(L), is the number of states in the minimal DFA for L. It is well known
that a DFA is minimal if all its states are reachable from its initial state, and no two of its states are equivalent.

The state complexity of an operation on regular languages is the maximal state complexity of the language resulting from
the operation as a function of the state complexities of the arguments [2,5,6].

Formally, if f is a k-ary operation on regular languages over an alphabet � preserving regularity, then the state complex-
ity of the operation f is given by a function sc f from Nk to N defined as sc f (n1, n2, . . . , nk) = max{sc(f (L1, L2, . . . , Lk)) |
Li ⊆ �∗ and sc(Li) = ni for i = 1, 2, . . . , k}.

Every nondeterministic automaton A = (Q , �, δ, I, F) can be converted to an equivalent DFA A′ = (2Q , �, ·, I, F ′), where
F ′ = {R ∈ 2Q | R ∩ F �= ∅} and R ·a = δ(R, a) for each R in 2Q and each a in � [17]. The DFA A′ is called the subset automaton
of the NFA A. The subset automaton need not be minimal since some of its states may be unreachable or equivalent. The
following lemma shows that in some cases, we can guarantee the distinguishability of the states in a subset automaton.

Lemma 1. For every state q of an NFA N, let there be a string wq such that wq is accepted by N from the state q, but it is rejected from
any other state. Then all the states in the subset automaton of the NFA N are pairwise distinguishable.

Proof. Two distinct subsets of the subset automaton of the NFA N differ in a state q, and the string wq distinguishes the
two subsets. �

Download English Version:

https://daneshyari.com/en/article/435478

Download Persian Version:

https://daneshyari.com/article/435478

Daneshyari.com

https://daneshyari.com/en/article/435478
https://daneshyari.com/article/435478
https://daneshyari.com

