
Science of Computer Programming 76 (2011) 555–586

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Metamodeling semantics of multiple inheritance
Roland Ducournau a,∗, Jean Privat b
a LIRMM – CNRS and Université Montpellier II, 161 rue Ada, 34000 Montpellier, France
b Dép. d’Informatique, UQAM, 210, avenue du Président-Kennedy, Montréal, QC, H2X 3Y7, Canada

a r t i c l e i n f o

Article history:
Received 26 December 2008
Received in revised form 5 October 2010
Accepted 21 October 2010
Available online 7 November 2010

Keywords:
Object-oriented programming
Multiple inheritance
Metamodeling
Redefinition
Linearization
Open-world assumption
Static typing
Virtual types

a b s t r a c t

Inheritance provides object-oriented programming with much of its great reusability
power. When inheritance is single, its specifications are simple and everybody roughly
agrees on them. In contrast, multiple inheritance yields ambiguities that have prompted
long-standing debates, and no two languages agree on its specifications. In this paper,
we present a semantics of multiple inheritance based on metamodeling. A metamodel
is proposed which distinguishes the ‘‘identity’’ of properties from their ‘‘values’’ or
‘‘implementations’’. It yields a clear separation between syntactic and semantic conflicts.
The former can be solved in any language at the expense of a common syntactic construct,
namely full name qualification. However, semantic conflicts require a programmer’s
decision, and the programming language must help the programmer to some extent.
This paper surveys the approach based on linearizations, which has been studied in
depth, and proposes some extensions. As it turns out that only static typing takes full
advantage of the metamodel, the interaction between multiple inheritance and static
typing is also considered, especially in the context of virtual types. The solutions proposed
by the various languages with multiple inheritance are compared with the metamodel
results. Throughout the paper, difficulties encountered under the open-world assumption
are stressed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Inheritance is commonly regarded as the feature that distinguishes object-oriented programming from other
modern programming paradigms, but researchers rarely agree on its meaning and usage. Taivalsaari [96]

Class specialization and inheritance represent key features of object-oriented programming andmodeling. Introduced in the
Simula language [10], they have been related to the Aristotelian syllogistic [82–84] and contribute to the way the object-
oriented approach meets software engineering requirements such as reusability and extensibility.

In spite of Taivalsaari’s quotation above, inheritance is relatively simple when it is single, i.e. when a class cannot have
more than one direct superclass—hence, the class specialization hierarchy is a tree or a forest. This is, however, a major
limitation and there have been attempts since from the very beginning of object-oriented programming to soundly specify
multiple inheritance in the pioneer object-oriented languages, i.e. Flavors [105], Smalltalk [12], and Simula [63]. It quickly
appeared that multiple inheritance was not as simple as single inheritance since conflictsmay occur that make the behavior
hard to specify and give full meaning to the quotation. Different trends have divided the object-oriented programming
community, with each one advocating a preferred policy.

∗ Corresponding author.
E-mail addresses: ducour@lirmm.fr, DUCOUR@LIRMM.FR (R. Ducournau), privat.jean@uqam.ca (J. Privat).

0167-6423/$ – see front matter© 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2010.10.006

http://dx.doi.org/10.1016/j.scico.2010.10.006
http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:ducour@lirmm.fr
mailto:DUCOUR@LIRMM.FR
mailto:privat.jean@uqam.ca
http://dx.doi.org/10.1016/j.scico.2010.10.006


556 R. Ducournau, J. Privat / Science of Computer Programming 76 (2011) 555–586

1. A few production languages, but mainly Smalltalk [47], are in pure single inheritance, and their key feature is dynamic
typing.

2. Several production languages, such as C++ [58,94], Eiffel [71,72], or Clos [92], propose full multiple inheritance. They
were designed in the 1980s, and Python [101] is one of the few from the 1990s. All of them are widely used but have
been the focus of considerable discussion, e.g. [6,91,19,104,86], and they all behave in a different way with respect to
multiple inheritance.

3. Some languages are based on the close notions ofmixins [13] or traits [27]. They aremostly research languages; Scala [78]
is the most representative among recent ones, and Ruby [43] is one of the very few production languages that comply
with this trend. A recent language, i.e. Fortress [2], is based on a close notion.

4. In the static typing setting, amajor trendwas inauguratedwith Java interfaces [49], where classes are in single inheritance
but with multiple subtyping, as a class can implement several unrelated interfaces; many recent languages, e.g. C# [73]
and .Net languages, follow this trend.

Besides these programming languages, the main (or even only) modeling language, i.e. Uml [80], includes multiple
inheritance without any precise specification.

The need for multiple inheritance has also prompted a long-standing debate. Besides the aforementioned references,
see for instance [88] and various related conference panel sessions. However, the fact that few statically typed languages
use pure single inheritance, i.e. single subtyping, strongly underlines the importance of multiple inheritance. The rare
counterexamples, such as Oberon [106,75], Modula-3 [50], or Ada 95 [8], result from the evolution of non-object-oriented
languages. Furthermore, the absence of Java-like multiple inheritance of interfaces was viewed as a deficiency of the Ada 95
revision, and this feature was incorporated in the next version [95]. The requirement for multiple inheritance is less urgent
in the dynamic typing framework; for instance, all Java multiple subtyping hierarchies can be directly defined in Smalltalk,
by simply dropping all interfaces. Conversely, statically typing a Smalltalk hierarchy only involves adding new interfaces to
introducemethods that are introduced by more than one Smalltalk class.1

Overall, despite the numerous dedicated works, multiple inheritance is not a closed issue. From this standpoint, there is
no satisfactory language. As we shall see, even languages based on multiple subtyping may be flawed, since they may not
ensure full reusability. In this paper, we propose a semantics of class specialization and inheritance which is ‘‘natural’’, or
even ‘‘Aristotelian’’. Our proposal aims to ensure universality and simplicity by (i) clarifying concepts and clearly defining
problems related to multiple inheritance in general; (ii) identifying specific multiple inheritance issues that are usually
unresolved (or poorly resolved) and proposing solutions for them; and (iii) formally discussing and comparing the different
specifications of many OO languages (C++, Java, Clos, Python, C#, etc.).

The proposed semantics is based onmetamodeling, i.e. reifying the concerned entities, namely classes and properties. The
proposed metamodel is the simplest metamodel that models classes and properties in such a way that each name in the
program code can denote a single instance of themetamodel. It allows us to get rid of names and their associated ambiguities
in order to just consider reified entities. In contrast, most object-oriented languages, especially in static typing, attempt to
interpret names and inheritance in the Algol tradition, on the basis of the scope and extent—e.g. the so-called scope resolution
operator in C++.Whereas it canworkwith single inheritance, i.e. the subclass is interpreted as a block nested in its superclass,
it obviously fails with multiple inheritance. The first benefit drawn from this metamodel is to precisely distinguish the
‘‘identity’’ of a property from its ‘‘value’’ (or ‘‘implementation’’) in a given class. In turn, it strongly distinguishes between
two kinds of conflict which should not be confused, even though they are currently confused in all known languages with
multiple inheritance. The first kind of conflict involves property names, and occurswhen a class inherits two propertieswith
the same name or signature, which have however been introduced in unrelated classes. The second kind of conflict occurs
when a class cannot choose between different implementations for the same property. A variant concerns the case where
several implementationsmust be combined. These two categories are quite different and require different answers. The first
kind is purely syntactical, and a simple unambiguous denotation would provide a solution; for instance, it would make Java
fully reusable in the sense that any pair of unrelated class/interface could be specialized by a common subclass. The second
kind of conflict involves the program semantics; the solution cannot rely on some syntactic feature but the languages should
offer the programmer some help for managing them. One approach has been studied in depth, namely linearization [32,33,
55,34–36,9,40,45]. These two inheritance levels were originally identified in [36], but the lack of a metamodel hindered the
authors from finishing the analysis.

The approach proposed in this paper would apply to all object-oriented programming languages with multiple
inheritance, multiple subtyping, or even mixins. However, it turns out that static typing is required to take full advantage of
themetamodel. Therefore the paper is focused on statically typed languages. Without loss of generality, this proposal cross-
cuts usual type theories and object calculi. Usual type theories, e.g. record types [16], are based on names, and substituting
reified properties for names does not change the considered type theory. However, multiple inheritance conflicts and some
related solutions have special effects on types when redefinition is not type invariant. Hence, the metamodel is also applied
to virtual types [98], and this paper analyzes the way static typing and multiple inheritance interact.

1 The ‘‘introduction’’ term is crucial here and will be more formally defined. A class introduces a method when it defines a method with a new name (or
signature) that is not already defined in any of its superclasses.



Download English Version:

https://daneshyari.com/en/article/435534

Download Persian Version:

https://daneshyari.com/article/435534

Daneshyari.com

https://daneshyari.com/en/article/435534
https://daneshyari.com/article/435534
https://daneshyari.com

