
Theoretical Computer Science 609 (2016) 544–560

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A canonical form based decision procedure and model
checking approach for propositional projection temporal
logic ✩

Zhenhua Duan, Cong Tian ∗, Nan Zhang

ICTT and ISN Laboratory, Xidian University, Xi’an, 710071, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2014
Received in revised form 27 June 2015
Accepted 24 August 2015
Available online 10 September 2015

Keywords:
Decision procedure
Propositional projection temporal logic
Büchi automata
Model checking

This paper proposes a Canonical Form (CF) for chop formulas of Propositional Projection
Temporal Logic (PPTL). Based on CF, an improved algorithm for constructing Labeled
Normal Form Graph (LNFG) of a PPTL formula is presented. This improvement leads to a
better decision procedure for PPTL with infinite models. In addition, a transformation from
LNFGs to Generalized Büchi Automata (GBA) and then Büchi Automata (BA) is formalized.
Thus, a SPIN based model checking approach is generalized for PPTL. To illustrate how
these algorithms work, several examples are given.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Model checking is a useful approach for verifying programs [1,2]. The usually used temporal logics for defining properties
are Linear Temporal Logic (LTL) and Computing Tree Logic (CTL) [3,4]. However, as is well known, the expressive power of
both LTL and CTL is limited such that some necessary properties of programs cannot be verified. In fact, the expressive power
of these two logics is less than full regular expressions. Therefore, a stronger temporal logic with full regular expressive
power is desired in program verification.

Propositional Projection Temporal Logic (PPTL) [7,10,5], whose expressive power is equal to full regular expressions [11],
subsumes Propositional Interval Temporal Logic (PITL) [9]. It is a useful logic in the specification and verification of con-
current systems [17,18]. In the past years, a decision procedure based on Labeled Normal Form Graph (LNFG) was given
for PPTL formulas [25] and is improved in [6,13]. Specifically, finiteness of LNFGs is proved in the former and a practical
constructing algorithm of LNFGs is formalized in the latter. The decision algorithm is actually to find out a model in the
LNFG of a formula. Given a PPTL formula P , to check whether or not it is satisfiable, we first try to construct its LNFG, then
look for a model in the LNFG of the formula. If a model is found out for P in its LNFG, P is satisfiable, otherwise, it is
unsatisfiable. Based on the decision procedure, a model checking approach based on SPIN [15] for PPTL is proposed in [8].
Actually, to verify a property of a system with model checking, the property can be specified by a PPTL formula Q , while
the system is modeled with a transition system such as Kripke structure or an automaton M . In the next step, we first
transform ¬Q to an LNFG G , then we check whether or not M ∩ G is empty.

✩ This research is supported by National Natural Science Foundation of China under Grant Nos. 61133001, 61322202, 61420106004, 61272117, and
91418201.

* Corresponding author.
E-mail address: ctian@mail.xidian.edu.cn (C. Tian).

http://dx.doi.org/10.1016/j.tcs.2015.08.039
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.08.039
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:ctian@mail.xidian.edu.cn
http://dx.doi.org/10.1016/j.tcs.2015.08.039
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.08.039&domain=pdf

Z. Duan et al. / Theoretical Computer Science 609 (2016) 544–560 545

In this paper, we further improve the existing constructing algorithm of LNFGs for a PPTL formula in the following
two aspects (see Section 2 for details of notations such as len(k), fin(lk) etc.): (1) for a simple chop formula, P ; Q , if
P ≡ P ′ ∧ len(k), k ∈ N0, we do not need to add a fin label to the formula since P is a terminal formula; (2) for a canonical
form of chop formulas, P ≡ (P1; P2) ∧ Z , where P1 and P2 are also canonical chop formulas, and Z is not a chop formula,
unlike in [6], we need only to add a fin label into the formula P1 ∧ fin(lk); P2 without further concerning chop constructs
inside the formulas P1. In this way, less fin labels are required during the construction process of an LNFG. Thus, the
constructing algorithm of LNFGs for PPTL formulas can be simplified, leading to a simpler decision procedure. In addition,
an LNFG can be transformed to a Generalized Büchi Automaton (GBA) [14], and a GBA can further be transformed to a
Büchi Automaton (BA) [14]. Therefore, when a system is modeled by an automaton M and a property of the system is
specified by a PPTL formula P , the LNFG G of the formula ¬P is constructed, then G is transformed into a GBA A and
further transformed into a BA A′ . To check whether or not M |� P amounts to checking if M ∩ A′ = ∅. This can be done by
utilizing model checker SPIN [15]. Thus, we can obtain a SPIN based model check approach for PPTL.

The paper is organized as follows. The next section briefly introduces PPTL, including its syntax and semantics. Section 3
discusses chop formulas. In particular, a canonical form of chop formulas is presented. In Section 4, an improved constructing
algorithm of LNFGs for PPTL formulas is formalized. Some examples are given to show how the algorithm works. Section 5
focuses on SPIN based model checking approach for PPTL formulas. In particular, the transformation algorithms from an
LNFG to a GBA and then to a BA are presented in details. Finally, conclusion and future research are drawn in Section 6.

2. Propositional project temporal logic

Propositional Projection Temporal Logic (PPTL) [10,7] is an extension of Propositional ITL (PITL) [9] with infinite models
and a new projection construct. Let Prop be a countable set of atomic propositions and B = {true, false} the boolean domain.
Usually, we use lowercase letters like p, q and r, possibly with subscripts, to denote atomic propositions and capital letters
like P , Q and R , possibly with subscripts, to represent general PPTL formulas. Formulas of PPTL are defined by the following
grammar:

P ::= p | ¬P | P1 ∧ P2 | ©P | (P1, . . . , Pm)prj P | P+

where p ∈ Prop, © (next), + (chop-plus) and prj (projection) are temporal operators. ¬ and ∧ are similar as that in the
classical propositional logic.

We define a state s over Prop to be a mapping from Prop to B , s : Prop → B . We write s[p] to denote the val-
uation of p at state s. An interval σ =< s0, s1, · · · > is a non-empty sequence of states, which can be finite or infi-
nite. The length of σ , |σ |, is the number of states in σ minus one if σ is finite; otherwise it is ω. Let N0 denote
the set of non-negative integers. To have a uniform notation for both finite and infinite intervals, we will use ex-
tended integers as indices, that is Nω = N0 ∪ {ω}, and extend the comparison operators, =, <, ≤, to Nω by considering
ω = ω, and for all i ∈ N0, i < ω. Moreover, we write � as ≤ −{(ω, ω)}. To simplify definitions, we will denote σ by
< s0, · · · , s|σ | >, where s|σ | is undefined if σ is infinite. With such a notation, σ(i.. j)(0 ≤ i � j ≤ |σ |) denotes the sub-interval
< si, · · · , s j >.

To formalize the semantics of the projection construct, we need an auxiliary operator ↓. Let σ =< s0, s1, . . . > be
an interval and r1, . . . , rh be integers (h ≥ 1) such that 0 ≤ r1 ≤ . . . ≤ rh � |σ |. The projection of σ onto r1, . . . , rh

is the projected interval, σ ↓ (r1, . . . , rh)
def=< st1 , st2 , . . . , stl >, where t1, . . . , tl are attained from r1, . . . , rh by delet-

ing all duplicates. In other words, t1, . . . , tl is the longest strictly increasing subsequence of r1, . . . , rh . For instance,
< s0, s1, s2, s3 >↓ (0, 2, 2, 2, 3) =< s0, s2, s3 >. The concatenation (·) of a finite interval σ =< s0, s1, . . . , s|σ | > with
another interval σ ′ =< s′

0, s
′
1, . . . , s

′|σ | > is represented by σ · σ ′ =< s0, s1, . . . , s|σ |, s′
0, s

′
1, . . . , s

′|σ | > (not sharing any
states).

An interpretation is a tuple I = (σ , k, j), where σ =< s0, s1, . . . > is an interval, k is a non-negative integer, and j is an
integer or ω such that 0 ≤ k � j ≤ |σ |. We write (σ , k, j) to mean that a formula is interpreted over a subinterval σ(k.. j)

with the current state being sk . We utilize Ik
prop to stand for the state interpretation at state sk . The satisfaction relation |�

for formulas is given as follows:

I |� p iff sk[p] = Ik
prop[p] = true

I |� ¬P iff I �|� P
I |� P1 ∧ P2 iff I |� P1 and I |� P2
I |� ©P iff k < j and (σ ,k + 1, j) |� P
I |� (P1, . . . , Pm)prj P iff there exist integers r0, . . . , rm,and k = r0 ≤ . . . ≤ rm−1 � rm ≤ j such that

(σ , rl−1, rl) |� Pl for all 1 ≤ l ≤ m and (σ ′,0, |σ ′|) |� P for σ ′ given by:
(1) rm < j and σ ′ = σ ↓ (r0, . . . , rm) · σ(rm+1,..., j)
(2) rm = j and σ ′ = σ ↓ (r0, . . . , rh) for some 0 ≤ h ≤ m

I |� P+ iff there are finitely many integers r0, . . . , rn and k = r0 ≤ r1 ≤ . . . ≤ rn−1 � rn = j (n ≥ 1)

such that (σ , rl−1, rl) |� P for all 1 ≤ l ≤ n; or j = ω and there are infinitely many integers
k = r0 ≤ r1 ≤ r2 ≤ . . . such that lim

i→∞
ri = ω and (σ , rl−1, rl) |� P for all l ≥ 1.

Download English Version:

https://daneshyari.com/en/article/435541

Download Persian Version:

https://daneshyari.com/article/435541

Daneshyari.com

https://daneshyari.com/en/article/435541
https://daneshyari.com/article/435541
https://daneshyari.com

