
Theoretical Computer Science 609 (2016) 639–657

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

A complete axiom system for propositional projection

temporal logic with cylinder computation model ✩

Nan Zhang, Zhenhua Duan ∗, Cong Tian

Institute of Computing Theory and Technology, and ISN Laboratory, Xidian University, Xi’an 710071, PR China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 October 2014
Received in revised form 9 April 2015
Accepted 6 May 2015
Available online 13 May 2015

Keywords:
Axiom system
Multi-core
Model
Specification
Verification

To specify and verify multi-core parallel programs in a uniform framework, this paper
proposes an axiom system for CCM–PPTL which extends that of PPTL by including
transformation rules for sequence expressions and axioms as well as inference rules on the
CCM construct. Further, the soundness and completeness of the extended axiom system are
proved.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid development of integrated circuits technology and the demand for higher performance, on-chip multi-core
processors (CMP) have been brought into being. The reality of multi-core processor has made parallel programs pervasive.
Creating a correct parallel program is not a straightforward process even for a considerable small program, because program-
mers are forced to consider that the program will always yield to a correct result no matter in what order the instructions
are executed. To improve the reliability of parallel programs, formal verification is an important viable approach. Model-
ing multi-core parallel programs is a crucial step for formal verification of correctness and reliability of multi-core parallel
programs.

Model checking [5,18] and theorem proving [3] are two key verification methods. With model checking, the system is
often modeled as a finite transition system or automaton M , and the property is specified using a temporal logic formula P .
Then a model checking procedure is employed to check whether or not M |� P is valid. If so, the property is verified oth-
erwise a counterexample can be found. The advantage of model checking is that the verification can be done automatically.
However, model checking suffers from the state explosion problem [14]. Further, most of web applications are data-intensive
which are not suitable to be verified by means of model checking since the treatment of the data usually leads to a huge,
even infinite state space. Some successful model checking tools are SPIN [13], SMV [14] and so on. By contrast, theorem
proving can handle many complex structures abstractly without suffering from state space explosion problem. However,
theorem proving requires more human interventions and is often time-consuming. With theorem proving, both the system
behavior and the desired property are specified as formulas, say S and P , in some appropriate logic. To prove that the

✩ This research is supported by the NSFC under Grant Nos. 61133001, 61202038, 61322202, 61420106004 and 91418201.

* Corresponding author.
E-mail addresses: nanzhang@xidian.edu.cn (N. Zhang), zhhduan@mail.xidian.edu.cn (Z. Duan), c.tian@mail.xidian.edu.cn (C. Tian).

http://dx.doi.org/10.1016/j.tcs.2015.05.007
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.05.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:nanzhang@xidian.edu.cn
mailto:zhhduan@mail.xidian.edu.cn
mailto:c.tian@mail.xidian.edu.cn
http://dx.doi.org/10.1016/j.tcs.2015.05.007
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.05.007&domain=pdf

640 N. Zhang et al. / Theoretical Computer Science 609 (2016) 639–657

system satisfies the property amounts to proving that � S → P is a theorem within the proof system of the logic. Some
famous theorem provers are PVS [16], ACL2 [4], Coq [2], Isabella [17], HOL [11] and so on.

Verification of multi-core parallel programs raises a great challenge for theorem proving since it requires that the logic
for modeling multi-core systems and specifying the expected properties has a powerful expressiveness. However, the widely
used Propositional Linear Temporal Logic (PLTL) and Computational Tree Logic (CTL) are not powerful enough. In fact, they
are not full regular. Although Quantified Linear time Temporal Logic (QLTL) [19], Extended Temporal Logic (ETL) [22] and
linear μ-calculus [21] have full regular expressiveness, these logics are not intuitive to use in practice. Propositional Projec-
tion Temporal Logic (PPTL) [6] allows us to specify ω full regular properties [20]. Further, a decision procedure [9,8] and a
complete proof system for PPTL [10] have been established. A model checker based on SPIN [7] and a theorem prover based
on PVS have also been developed. Cylinder Computation Model (CCM) [23] is a concurrent semantic model which is defined
based on PPTL and has been implemented in the interpreter of MSVL (Modeling, Simulation and Verification Language) [6],
which is an executable subset of Projection Temporal Logic. CCM can be employed to model multi-core parallel programs
since the sequence expressions in it have the nature of regular expressions. With CCM, the autonomy and parallelism of
the processes occupying different cores on one chip can be described neatly and concisely. In [10], we have proposed an
axiom system for PPTL, and proved its soundness and completeness. To specify and verify multi-core parallel programs in
a uniform framework, this paper proposes an axiom system for CCM–PPTL which extends that of PPTL by including trans-
formation rules for sequence expressions and axioms as well as inference rules on the CCM construct. Furthermore, the
soundness and completeness of the extended axiom system are also proved.

The paper is organized as follows: in the next section, the underlying logic PPTL and CCM are reviewed. Based on PPTL,
CCM–PPTL is introduced in Section 3, including the syntax, semantics and some logical laws regarding the CCM construct.
In Section 4, an axiom system for CCM–PPTL is formalized. In particular, the axioms, inference rules and the proofs of the
soundness and completeness are given in detail. In Section 5, an example is given to illustrate how to use CCM and its proof
system to model and verify practical algorithms. Finally, conclusions are drawn in Section 6.

2. Preliminaries

Our underlying logic is Propositional Projection Temporal Logic (PPTL), which is an interval-based temporal logic with ω
full regular expressiveness. For more details on PPTL, refer to [6,10].

2.1. Propositional projection temporal logic

2.1.1. Syntax
The formula P of PPTL can be defined by the following grammar,

P ::= p | © P | ¬P | P1 ∨ P2 | (P1, . . . , Pm) prj P

| (P1, . . . , (Pi, . . . , Pl)
⊕, . . . , Pm) prj P

where p ∈ Prop, P1, . . . , Pi, . . . , Pl, . . . , Pm (1 ≤ i ≤ l ≤m, i, l, m ∈ N0) and P are all well-formed PPTL formulas, and ©, prj
and prj⊕ (projection-plus) are primitive temporal operators. A formula is called a state formula if it contains no temporal
operators, otherwise it is called a temporal formula.

2.1.2. Semantics
We define a state s over Prop to be a mapping from Prop to B .

s : Prop → B

We use s[p] to denote the valuation of p at state s.
An interval σ is a non-empty sequence of states, which can be finite or infinite. The length, |σ |, of σ is ω if σ is infinite,

and the number of states minus 1 if σ is finite. We consider the set N0 of non-negative integers and ω, Nω = N0 ∪ {ω} and
extend the comparison operators, =, <, ≤, to Nω by considering ω = ω, and for all i ∈ N0, i < ω. Furthermore, we define
� as ≤ −{(ω, ω)}. To simplify definitions, we will denote σ as 〈s0, . . . , s|σ |〉, where s|σ | is undefined if σ is infinite. With
such a notation, σ(i... j)(0 ≤ i � j ≤ |σ |) denotes the sub-interval 〈si, . . . , s j〉 and σ i (0 ≤ i ≤ |σ |) denotes the prefix interval
〈s0, . . . , si〉. The concatenation of a finite σ with another interval (or empty string) σ ′ is denoted by σ •σ ′ (not sharing any
states). Let σ = 〈s0, s1, . . . , s|σ |〉 be an interval and r1, . . . , rh be integers (h ≥ 1) such that 0 ≤ r1 ≤ r2 ≤ . . . ≤ rh � |σ |. The
projection of σ onto r1, . . . , rh is the interval (called projected interval)

σ ↓ (r1, . . . , rh)= 〈st1 , st2 , . . . , stl 〉
where t1, . . . , tl are obtained from r1, . . . , rh by deleting all duplicates. That is, t1, . . . , tl is the longest strictly increasing
subsequence of r1, . . . , rh .

An interpretation is a triple I = (σ , k, j), where σ is an interval, k an integer, and j an integer or ω such that 0 ≤ k �
j ≤ |σ |. We use the notation (σ , k, j) |� P to indicate that some formula P is interpreted and satisfied over the subinterval
〈sk, . . . , s j〉 of σ with the current state being sk . The satisfaction relation (|�) is inductively defined in Table 1.

Download English Version:

https://daneshyari.com/en/article/435549

Download Persian Version:

https://daneshyari.com/article/435549

Daneshyari.com

https://daneshyari.com/en/article/435549
https://daneshyari.com/article/435549
https://daneshyari.com

