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A ternary permutation constraint satisfaction problem (CSP) is specified by a subset � of 
the symmetric group S3. An instance of such a problem consists of a set of variables V
and a set of constraints C, where each constraint is an ordered triple of distinct elements 
from V . The goal is to construct a linear ordering α on V such that, for each constraint 
(a, b, c) ∈ C, the ordering of a, b, c induced by α is in �. Excluding symmetries and 
trivial cases there are eleven such problems, and their complexity is well known. Here 
we consider the variant of the problem, denoted 2-�, where we are allowed to construct 
two linear orders α and β and each constraint needs to be satisfied by at least one of the 
two. We give a full complexity classification of all eleven 2-� problems, observing that in 
the switch from one to two linear orders the complexity landscape changes quite abruptly 
and that hardness proofs become rather intricate. To establish the proofs, we use several 
computer-aided searches. Each such search returns a small instance with a unique solution 
for a given problem. We then focus on one of the eleven problems in particular, which is 
closely related to the 2-Caterpillar Compatibility problem in the phylogenetics literature. 
We show that this particular CSP remains hard on three linear orders, and also in the 
biologically relevant case when we swap three linear orders for three phylogenetic trees, 
yielding the 3-Tree Compatibility problem. Lastly, we give extremal results concerning the 
minimum number of trees required, in the worst case, to satisfy a set of rooted triplet 
constraints on n leaf labels.

© 2015 Published by Elsevier B.V.

1. Introduction

A ternary permutation constraint satisfaction problem (CSP), sometimes also known as an ordering CSP, is specified by 
a subset � of the symmetric group S3. An instance of such a problem consists of a set of variables V and a set of con-
straints C , where each constraint is an ordered triple of distinct elements from V . The goal is to construct a linear order α
on V such that, for each constraint (a, b, c) ∈ C , the ordering of a, b, c induced by α is in �. For example, if � = {123, 132}
then for each constraint (a, b, c) we require that α(a) < α(b) < α(c) or α(a) < α(c) < α(b), which can be summarized as 
α(a) < min(α(b), α(c)). Excluding symmetries and trivial cases there are eleven such problems, some of which have ac-
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Table 1
The complexity of the 11 ternary permutations CSPs, in the case of 1 linear order (1LO) (see [13]) and 2 linear 
orders (2LO) (this article).

1LO 2LO

�0 (linear ordering) 123 P NPC
�1 123, 132 P NPC
�2 123, 213, 231 P P
�3 123, 231, 312, 321 P P
�4 123, 231 NPC NPC
�5 (betweenness) 123, 321 NPC NPC
�6 123, 132, 231 NPC NPC
�7 (circular ordering) 123, 231, 312 NPC P
�8 S3\ 123, 231 NPC P
�9 (non-betweenness) S3\ 123, 321 NPC NPC
�10 S3\ 123 NPC P

quired specific names in the literature, such as betweenness [7] and cyclic ordering [9]. A full complexity classification of the 
11 problems is given in [13] and summarized in Table 1. Due to their fundamental character these problems have stimulated 
quite some interest from the approximation [11], parameterized complexity [12] and algebra [2] communities.

In this article we consider the variant of the problem, denoted k-�, where we are allowed to construct k linear orderings 
and each constraint needs to be satisfied by at least one of them. In Section 3, we give a full complexity classification 
of all eleven 2-� problems, observing that in the switch from one to two linear orders the complexity landscape does 
not behave monotonically (see Table 1). We note that for a single linear ordering the polynomial-time variants can be 
solved with variations of topological sorting, and the hard variants can be proven NP-complete using fairly straightforward 
reductions [13]. In the case of two linear orderings all the polynomial-time variants are trivially solvable while, for the 
other variants, establishing the NP-completeness is much more challenging, requiring a wide array of novel gadgets and 
constructions.

Our motivation for studying the k-� problems is that, in practice, constraints may come from different sources, and it 
might not be known which constraints come from a common source. In such situations, it makes sense to construct different 
solutions that commonly satisfy all given constraints. A good example of a practical problem where this phenomenon occurs 
can be found in phylogenetics, a branch of computational biology concerned with the inference of evolutionary histories [23]. 
We discuss this phylogenetics problem in Sections 5–8.

Here we are given a set of rooted triplets which are leaf labeled, rooted binary trees on three leaves. Rooted triplets have 
a central and recurring role within phylogenetics due to the fact that they can be viewed as the atomic building blocks 
of larger evolutionary histories [23]. Determining whether all elements in a set R of rooted triplets can simultaneously be 
embedded into a tree-like hypothesis of evolution, known as a phylogenetic tree, can be computed in polynomial-time by 
using the classical algorithm of Aho et al. [1]. If such a phylogenetic tree exists, then R is called compatible. Frequently 
however such a tree does not exist and one might be interested in finding a maximum-size compatible subset of R. This 
problem was first shown to be NP-hard by Bryant [4] as well as later again by [15,25], and several exact and approximation 
algorithms have been developed [6,25].

Recently, the impact of reticulation events, like hybridization and horizontal gene transfer, on the evolutionary history of 
certain groups of species is widely acknowledged. In the presence of reticulation, different parts of a genome often contain 
different tree-like evolutionary signals that need to be untangled [14,18,19]. To do this, a possible approach is the following. 
Instead of constructing one phylogenetic tree that embeds all triplets of a maximum-size compatible subset S of R and 
ignoring all evolutionary information of the triplets that are in R but not in S , it seems sensible to ask for the smallest 
integer k such that R can be partitioned into at most k compatible subsets of triplets. For each such subset, one can use 
the algorithm of Aho et al. to find a phylogenetic tree, which represents the evolutionary history of a part of the genome. 
The collection of all these phylogenetic trees can also be used as input to methods that construct a leaf-labeled acyclic 
digraph (called a “rooted phylogenetic network”) that contains all the computed phylogenetic trees and hence represents
the evolution of the whole genome, see e.g. [14]. This approach was introduced in [16] and the associated decision problem 
is called k-Tree Compatibility. In their paper, the authors show that 2-Tree Compatibility is NP-complete. We observe that 
the problem 2-�1 (which corresponds to the � = {123, 132} example given earlier) is equivalent to the problem studied 
in [16], with one extra restriction: the two phylogenetic trees we construct must be “caterpillars”, yielding the 2-Caterpillar 
Compatibility problem. Our hardness result for 2-�1 thus supplements the hardness result of Linz et al. (and, as a spin-off 
result presented in Section 4, establishes a link to the literature on the dichromatic number problem [3]). To further extend 
this result we show in Section 5 that 3-�1 is hard and, building on this machinery, 3-Tree Compatibility is also hard. As 
with many of the hardness results in this article we make heavy use of special gadgets that are unique solutions to the 
set of constraints that they imply. Such uniqueness gadgets could be of independent interest. To find these gadgets, we use 
several computer-aided searches that are described in Section 6. Each such search returns a small instance of one of the 
eleven k-� problems and provides a “backbone structure” for the construction used in the associated proof showing that 
the problem is NP-complete. Like other proofs that were established with the assistance of a computer (e.g. [8,22]), our 
results emphasize the potential importance of computers in establishing hardness results.
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