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In this paper, we address the online minimization knapsack problem, i.e., the items are 
given one by one over time and the goal is to minimize the total cost of items that covers 
a knapsack. We study the removable model, where it is allowed to remove old items from 
the knapsack in order to accept a new item. We obtain the following results.

(i) We propose a 8-competitive deterministic and memoryless algorithm for the problem, 
which contrasts with the result for the online maximization knapsack problem that no 
online algorithm has a bounded competitive ratio [14].

(ii) We propose a 2e-competitive randomized algorithm for the problem.
(iii) We derive a lower bound of 2 for deterministic algorithms for the problem.
(iv) We propose a 1.618-competitive deterministic algorithm for the case in which each 

item has size equal to its cost, and show that this is best possible.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The knapsack problem is one of the most classical and studied problems in combinatorial optimization and has a lot of 
applications in the real world [15]. The (classical) knapsack problem is: given a set of items with profits and sizes, and the 
capacity value of a knapsack, maximize the total profit of selected items in the knapsack satisfying the capacity constraint. 
This problem is also called the maximization knapsack problem (Max-Knapsack). Many variants and generalizations of the 
knapsack problem have been investigated [15]. Among them, the minimization knapsack problem (Min-Knapsack) is one of 
the most natural ones (see [1,2,5,6] and [15, pp. 412–413]), that is, given a set of items associated with costs and sizes, and 
the size of a knapsack, minimize the total cost of selected items that cover the knapsack.

In this paper, we focus on the online version of problem Min-Knapsack. Here, the “online” means that items are given 
over time, i.e., after a decision of rejection or acceptance is made on the current item, the next item is given, and once an 
item is rejected or removed, it cannot be considered again. The goal of the online minimization knapsack problem is the 
same as the offline version, i.e., to minimize the total cost.

✩ The previous version of this paper was appeared in conference WAOA 2009 [7]. This work was done when the first author worked in The University of 
Tokyo and supported in part by the Scientific Grant in Aid of the Ministry of Education, Science, Sports and Culture of Japan.
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Table 1
The current status of the complexity of problems Max-Knapsack and Min-Knapsack.

Max-Knapsack Min-Knapsack

lower bound upper bound lower bound upper bound

offline FPTAS [12] FPTAS [1]
online non-removable general unbounded [13] unbounded

size = cost unbounded [13] unbounded
removable general unbounded [14] 2 8

2e (randomized)
size = cost 1.618 [13] 1.618 [13] 1.618 1.618

Related work: It is well-known that offline Max-Knapsack and Min-Knapsack both admit a fully polynomial time approxi-
mation scheme (FPTAS) [1,6,15]. As for the online maximization knapsack problem, it was first studied using average case 
analysis by Marchetti-Spaccamela and Vercellis [18]. They proposed a linear-time approximation algorithm such that the 
expected difference between the optimal and the approximation solution value is O (log3/2 n) under the condition that the 
capacity of the knapsack grows proportionally to n, the number of items. Lueker [17] further improved the expected differ-
ence to O (logn) under a fairly general condition on the distribution. In 2002, Iwama and Taketomi [13] studied the problem 
using worst case analysis. They obtained a 1.618-competitive algorithm for the online Max-Knapsack under the removable
condition, if each item has its size equal to its profit. Here the removable condition means that it is allowed to remove some 
items in the knapsack in order to accept a new item. They also showed that this is best possible by providing a lower bound 
1.618 for this case. For the general case, Iwama and Zhang [14] showed that no algorithm for online Max-Knapsack has a 
bounded competitive ratio, even if the removal condition is allowed. Some generalizations of the online Max-Knapsack such 
as resource augmentations and Multi Knapsacks were investigated [14,20,11]. Han and Makino studied online max-knapsack 
problems with limited cuts and got an optimal upper bound [8], and the techniques can be applied to min-knapsack prob-
lem with limited cuts. For the randomized removable online knapsack problems, the upper bound is 2 and lower bound is 
1.368 [4,10]. There are also some references on online knapsack with buyback [9], i.e., we have to pay some cost when an 
item in the knapsack is removed for accepting a new item.

Our results: In this paper, we study the online minimization knapsack problem. We first show that no algorithm has a 
bounded competitive ratio, if the removable condition is not allowed. Under the removable condition, we propose two 
deterministic algorithms for the online Min-Knapsack. The first one is simple and has competitive ratio �(log �), where 
� is the ratio of the maximum size to the minimum size in the items, and the second one has competitive ratio 8. This 
constant-competitive result for the online Min-Knapsack contrasts with the result for the online Max-Knapsack that no 
online algorithm has a bounded competitive ratio [14], which is possibly surprising since the problems Max-Knapsack and 
Min-Knapsack are expected to have the same behavior from a complexity viewpoint (see Table 1).

The first algorithm is motivated by the observation: if all the items have the same size, then a simple greedy algorithm 
(called Lowest Cost First strategy) of picking items with the lowest cost first provides an optimal solution. We partition the 
input into �log�� + 1 subsets by their size. When a new item dt is given, the algorithm guesses the optimal value within 
a O (1) approximation factor, by using only the items in the knapsack together with the new item dt . Then for each subset, 
we choose items by the Lowest Cost First strategy such that the total cost in each subset is at most O (1) times the optimal 
value.

In order to improve the above algorithm, it has to select items with the lower total cost. However, this makes it difficult 
to guess the optimal value, since the item removed cannot be reused, even for guessing the optimal value. We devise the 
following strategy to overcome this difficulty. At each time, i) we guess the optimal value within O (1) factor, by repeatedly 
solving fractional Max-Knapsack problems, which is to maximize the total size subject to bounded costs with respect to 
the items in the knapsack and the coming item, and ii) in order to find items to be kept, for each j ≥ 0 we construct a 
subset H j of items by solving the fractional Max-Knapsack problem subject to 22− j times the optimal cost; we keep items 
in 

⋃
j≥0 H j . We guarantee that each class H j has cost at most 22− j times the optimal cost, which implies that the total 

cost in the knapsack is O (1) times the optimal cost. Since a feasible solution of the Min-Knapsack problem is always kept 
in the knapsack, the procedure above leads to an O (1)-competitive algorithm.

We also show that no deterministic online algorithm can achieve competitive ratio less than 2, and provide a randomized
online algorithm with competitive ratio 2e ≈ 5.44. We finally consider the case in which each item has cost equal to 
its size. Similarly to the online Max-Knapsack problem [13], we show that the online Min-Knapsack problem admits a 
1.618-competitive deterministic algorithm which matches the lower bound.

Table 1 summarizes the current status of the complexity of the problems Max-Knapsack and Min-Knapsack, where the 
bold letters represent the results obtained in this paper.

The rest of the paper is organized as follows. Section 2 gives definitions of the online Min-Knapsack problem, and 
shows that the “removable” condition is necessary for the online Min-Knapsack problem. Section 3 presents algorithms for 
the online Min-Knapsack problem, and Section 4 gives a lower bound 2 for the online Min-Knapsack problem. Finally, in 
Section 5, we consider the case where each item has cost equal to its size.
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