
Theoretical Computer Science 607 (2015) 272–281

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Optimal trees for minimizing average individual updating 

cost ✩

Sicen Guo a, Minming Li a,∗, Yingchao Zhao b

a City University of Hong Kong, Hong Kong
b Caritas Institute of Higher Education, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 1 April 2015
Received in revised form 18 August 2015
Accepted 24 August 2015
Available online 29 August 2015

Keywords:
Key tree
Optimality
Individual re-keying
Average case

Key tree is a popular model to maintain the security of group information sharing by using 
a tree structure to maintain the keys held by different users. Previously, researchers proved 
that to minimize the worst case updating cost in case of single user deletion, one needs 
to use a special 2–3 tree. In this paper, we study the average case for user update. We 
prove that in the optimal tree, the branching degree of every node can be bounded by 3 
and furthermore the structure of the optimal tree can be pretty balanced. We also show 
the way to construct the optimal tree when there are loyal users in the group. Finally we 
discuss about the weighted case where different users have different probabilities to be 
the first one leaving the group. We design a polynomial time algorithm to construct the 
optimal tree when the number of different probabilities is a constant.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Broadcasting is widely used in our daily lives, such as paid television channel and group-chat. For either privacy or profit 
reason, security (message integrity, confidentiality and authority) has become an important design issue in broadcasting sys-
tems. To satisfy the security requirement, key encryption must be adopted in broadcasting/multicasting communication. Only 
authorized users hold a shared group key, which is used for decrypting broadcasting messages. When a user leaves/joins the 
group, broadcasting a new shared group key is compulsory to achieve both Backward Access Control (the new users cannot 
access previous messages) and Forward Access Control (the leaving users cannot decrypt further messages) [10].

There are two re-keying strategies: individual re-keying, and batch re-keying. Individual re-keying means that the group 
needs to update keys for every user join/leave request, while batch re-keying updates keys only after a certain period 
instead of immediately. Wong et al. [6] proposed a key tree model to specify secure groups and discussed the performance 
of individual re-keying. They proved that the complexity of individual re-keying is O(log n), where n is the group size. 
Individual re-keying can achieve both Backward Access Control and Forward Access Control perfectly, but synchronization 
problem will occur when there is a batch of updates [9]. Meanwhile, batch re-keying can alleviate out-of-sync problems and 
also improve scalability. Since batch re-keying updates keys in a certain period, it cannot entirely fulfill the Forward Access 
Control. In most situations, batch re-keying is acceptable if the update period is not too long. However, individual re-keying 
is more suitable than batch re-keying in certain situations.

✩ This work was fully supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China [Project No. City 
122512].

* Corresponding author.
E-mail addresses: minming.li@cityu.edu.hk (M. Li), zhaoyingchao@gmail.com (Y. Zhao).

http://dx.doi.org/10.1016/j.tcs.2015.08.030
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.08.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:minming.li@cityu.edu.hk
mailto:zhaoyingchao@gmail.com
http://dx.doi.org/10.1016/j.tcs.2015.08.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.08.030&domain=pdf


S. Guo et al. / Theoretical Computer Science 607 (2015) 272–281 273

In the key tree model proposed by Wong et al. [6], the group membership is maintained by a Group Controller (GC). 
There are three kinds of keys: the group key, individual keys and auxiliary keys, all of which are maintained through a 
key tree by the GC. The group key, a unique symmetric key (traffic encryption key, shorted as TEK), is used to encrypt the 
content and the GC should notify all the group users about this key. The individual key is the key known by each individual 
user and the GC only. In the key tree, the root stores the TEK and each leaf stores an individual key, while the rest (non-root 
internal node) stores auxiliary keys (key encryption key, shorted as KEK). Whenever a user joins or leaves, the TEK should 
be updated and notified to the remaining users to guarantee the content security. Since all the users (leaves) know about 
the keys in the path from itself to the root, the GC should rekey all these keys when certain user change happens. The 
updating procedure is in bottom-up fashion. For batch re-keying, Graham et al. [2] studied the optimal key tree structure 
with the assumption that all the users have the same probability p of being replaced by a new user in the batch period, 
which is extended from [10]. They proved that when p > 1 − 3

1
3 ≈ 0.307, the star is optimal, and when p ≤ 1 − 3

1
3 , the 

branching degree of each non-root internal node has an upper bound four. Based on these findings, they provided an O(n)

algorithm for constructing the optimal tree for n users with a fixed probability p. Based on the work of [2], Chan et al. [1]
extended the model by introducing loyal users to batch re-keying. They showed that when p ≥ 0.43, the star is optimal and 
similar structural results are obtained which enable a dynamic programming algorithm.

For individual re-keying, Snoeyink et al. [5] investigated the optimal tree structure with n leaves where the worst case 
single deletion cost is minimum. Their result shows that the optimal tree is a special kind of 2–3 tree defined as follows.

(1) When n ≥ 5, the root degree is 3 and the number of leaves in three subtrees of the root differs by at most 1. When 
n = 4, the tree is a complete binary tree. When n = 2 or n = 3, the tree has root degree 2 and 3 respectively.

(2) Each subtree of the root is a 2–3 tree defined recursively.
Optimal trees with other user join/leave behaviors are studied in [3,4,7,8].
In this paper we study the average case and aim to find the optimal tree structures to minimize the average cost for a 

single deletion.
The remaining part of this paper is organized as follows. In Section 2, we describe our model and problem in detail. In 

Section 3, we prove that a ternary balanced tree is optimal in the normal case. Later in Section 4, we show that the same 
result still holds for one loyal user case. In Section 5, we extend our results to the case of weighted users where the weight 
represents a user’s probably to be the next one leaving the group. Finally, we conclude our work in Section 5.

2. Preliminaries

In the key tree model, each leaf represents a user. Every user has an individual key which is only known by the user itself 
and the group controller (GC). The root stores a group key called traffic encryption key (TEK), which is used for transmitting 
encrypted contents. Except for the root, other internal nodes store a key encryption key (KEK), which is used for updating 
TEK and shared by all its leaf descendants.

In individual re-keying scenario for a popular broadcasting service, a user will be replaced by a new user upon leaving. 
The GC will assign a new individual key to the new user. At the same time, the GC needs to update all the keys which 
belong to the ancestors of the updating spot to ensure both Backward Access Control and Forward Access Control. The key 
updating process is done in bottom-up fashion. Suppose v is the parent node of the updated user and its original group 
key is kv . At first, GC will assign the new user an individual key. After that, GC needs to update the key of node v . Assume 
that the new KEK for v is knew

v . To inform all the children of v of knew
v , the GC uses the individual key of every child of v to 

encrypt knew
v and broadcasts the encrypted message. In this way, the old user is unable to get the new KEK knew

v . Also, the 
new user is not aware of the old KEK kv . In total, the GC needs to broadcast dv messages, where dv stands for the number 
of children of v . The updating process of v ′s key is done. After that, the parent of v needs to update its key. The GC repeats 
the updating process until it comes to the root, where the stored TEK is updated.

If there is only one user leaving the system, this user can be any leaf in the tree. Notice that different user’s leaving may 
bring different update costs. We are interested in the tree with minimum average updating cost. When the number of users 
in the key tree is n, then minimizing average updating cost is equivalent to minimizing total cost of updating any leaf.

Denote the set of leaves in key tree T = (V , E) as L(T ) and denote v ′s ancestor set to be anc(v). Let dv be the number of 
children of v . Throughout the paper, we also use degree to denote dv . In other words, we use “degree” to mean “branching 
degree”. For example, a node with degree 3 means that the node has three children. Our goal is to find a tree with n leaves 
to minimize the total updating cost 

∑
v∈L(T )

∑
u:u∈anc(v) du . We use OPT(n) to denote the total updating cost of such a tree 

with n leaves. Alternatively, this total updating cost can also be expressed as 
∑

u∈V −L(T ) du Nu where Nu is the number of 
leaf descendants of u. When we use the alternative expression of the total cost, we say the cost is contributed by internal 
nodes. We define a totally balanced ternary tree to be a ternary tree where each subtree of the root is a totally balanced 
ternary tree and the number of leaves in these three subtrees differs by at most 1.

3. Optimal tree structures in the normal case

In this section, we will discuss the structures of the optimal tree. First of all, to minimize the cost, it is easy to see that 
degree 1 internal nodes cannot exist in the optimal tree. Then we start bounding the degree from above. In all the following 
figures, a small circle always represents a leaf.



Download English Version:

https://daneshyari.com/en/article/435604

Download Persian Version:

https://daneshyari.com/article/435604

Daneshyari.com

https://daneshyari.com/en/article/435604
https://daneshyari.com/article/435604
https://daneshyari.com

