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Abstract

Mutual information (MI) is in increasing use as a way of quantifying neural responses. However, it is still considered with some
doubts by many researchers, because it is not always clear what MI really measures, and because MI is hard to calculate in practice.
This paper aims to clarify these issues. First, it provides an interpretation of mutual information as variability decomposition, similar
to standard variance decomposition routinely used in statistical evaluations of neural data, except that the measure of variability is
entropy rather than variance. Second, it discusses those aspects of the MI that makes its calculation difficult. The goal of this paper
is to clarify when and how information theory can be used informatively and reliably in auditory neuroscience.
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1. Introduction

In recent years, information-theoretic measures are
increasingly used in neuroscience in general, and in audi-
tory research in particular, as tools for studying and quan-
tifying neural activity. Measures such as entropy and
mutual information (MI) can be used to gain deep insight
into neural coding, but can also be badly abused. This
paper is an attempt to present those theoretical and practi-
cal issues that we found particularly pertinent when using
information-theoretic measures in analyzing neural data.

The experimental context for this paper is that of mea-
suring a stimulus-response relationship. In a typical exper-
iment, a relatively small number of stimuli (~<100) are
presented repeatedly, typically 1-100 repeats for each stim-
ulus. The main experimental question is whether the neuro-
nal activity was different in response to the different stimuli.
If so, it is concluded that the signal whose activity is mon-
itored (single-neuron responses, evoked potentials, optical
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signals, and so on) was selective to the parameter manipu-
lated in the experiment.

The MI is a measure of the strength of association
between two random variables. The MI, I(S; R), between
the stimuli S and the neural responses R is defined in terms
of their joint distribution p(S, R). When this distribution is
known exactly, the MI can be calculated as

1S:R) = 3 pls, log, (p’(’()p()))

seS.reR

where p(s) =), pp(s,r) and p(r) =3 op(s,r) are the
marginal distributions over the stimuli and responses,

respectively.

The casy way to use the MI is to test for significant asso-
ciation between the two variables. Here the null hypothesis
is that the two variables are independent. The distribution
of the MI under the null hypothesis is (with appropriate
scaling) that of a y? variable, leading to a significance test
for the presence of association (e.g. Sokal and Rohlf,
1981; where it is called the G-statistic). Using the MI in this
way, only its size relative to the critical value of the test is
of importance.
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A more complicated way of using the M1 is to try to esti-
mate its actual value, in which case it is possible to make
substantially deeper inferences regarding the relationships
between the two variables. This estimation is substantially
more difficult than performing the significance test. The
reasons to undertake this hard estimation problem, and
the associated difficulties, are the main subject of this

paper.
2. Why mutual information?
2.1. The Mutual Information as a measure of stimulus effect

Neuronal responses are high-dimensional: to fully char-
acterize in detail any single spiking response to a stimulus
presentation, it is necessary to specify many values, such
as the number of spikes that occurred during the relevant
response window and their precise times. Similarly, mem-
brane potential fluctuates at >1000 Hz, and therefore more
than 200 measurements are required to fully specify a
100 ms response. We usually believe that most of the details
in such representations are unimportant, and instead of
specifying all of these values, typically a single value is used
to summarize single responses — for example, the total
spike count during the response window, or first spike
latency, or other such simple measures, that will be called
later ‘reduced measures’ of the actual response.

Having reduced the representation of the responses to a
single value, it is now possible to test whether the stimuli
had an effect on the responses. Usually, the effect that is
tested is a dependence of the firing rate of the neuron on
stimulus parameters. For example, to demonstrate fre-
quency selectivity, we will look for changes in firing rates
of a neuron as a function of tone frequency.

To understand what information-theoretic measures tell
us about neuronal responses, let us consider the standard
methods for performing such tests in detail. A test for a sig-
nificant difference between means is really about comparing
variances (Fig. 1): the variation between response means
has to be large enough with respect to variation between
responses to repeated presentations of the same stimulus.

Initially, all the responses to all stimuli are pooled
together, and the overall variability is estimated by the var-
iance of this set of values around its grand mean. Fig. 1
shows the analysis of artificial data that represents 20
repeats of each of two stimuli (these are actually samples
of two Poisson distributions with expected values of 5
and 10). In Fig. 1a, the overall distribution of all responses
(both of stimulus 1 and of stimulus 2) is presented. The
total variance is 10.9 (there are no units, since these are
spike counts), corresponding to a standard deviation of
about 3 spikes.

Part of the overall variation occurs because responses to
repeated presentation of the same stimulus are noisy — this
is called within-stimulus variability. Another part of this
overall variation is due to the fact that different stimuli
cause different responses. A stimulus effect is significant if
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Fig. 1. Variability analysis using variances and entropies. (a) Overall
distribution of 40 measurements (2 stimuli, 20 repeats of each stimulus).
(b) Distribution of the responses to the two stimuli. (c) Samples means.

the second variability source, between-stimulus variation,
is large enough relative to the first variability source, the
within-stimulus variability. Conceptually, the next step is
to compute within-stimulus variability. To do that, the var-
iance of all responses to each stimulus, around their own
mean, is computed (Fig. 1b). The two histograms represent
the responses to stimulus 1 (black) and stimulus 2 (gray),
with variances of 10.1 and 2 (standard deviations of about
3 and 1.5 spikes). This set of variances is then averaged
across stimuli, and used as an estimate of the within-stim-
ulus variability — for the data in Fig. 1, the average within-
stimulus variance is about 6.

It can be shown mathematically that within-stimulus
variability will always be smaller than the overall variance,
and the difference between them is the variability between
the means of the responses to the different stimuli
(Fig. Ic). Thus, the goal of dividing variance into two
sources, the within-stimulus variance and the across-stimu-
lus variance, is achieved.

This decomposition has good statistical properties, in
the sense that the two variability sources are uncorrelated.
Statistical theory can now be used to determine when the
ratio between the two variability sources should be consid-
ered as larger than expected under the assumption of no
stimulus effect (Sokal and Rohlf, 1981), leading to specific
statistical tests (e.g. the F-test of the 1-way ANOVA) in
Fig. 1 the F-test (or the equivalent f-test for equality of
means, which is essentially the same thing here) comes
out highly significant.

The recipe given above is extremely powerful, and there-
fore unsurprisingly is extensively used. However, it has
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