Contents lists available at [ScienceDirect](http://www.ScienceDirect.com/)

Theoretical Computer Science

www.elsevier.com/locate/tcs

Efficient approximation algorithms for bandwidth consecutive multicolorings of graphs

Yuji Obata, Takao Nishizeki [∗]

Kwansei Gakuin University, 2-1 Gakuen, Sanda 669-1337, Japan

A R T I C L E I N F O A B S T R A C T

Article history: Received 9 October 2014 Received in revised form 3 June 2015 Accepted 28 July 2015 Available online 31 July 2015

Keywords: Graph coloring Bandwidth consecutive multicoloring Approximation algorithm

Let *G* be a graph in which each vertex v has a positive integer weight $b(v)$ and each edge *(v, w)* has a nonnegative integer weight *b(v, w)*. A bandwidth consecutive multicoloring, simply called a *b*-coloring of *G*, assigns each vertex *v* a specified number $b(v)$ of consecutive positive integers as colors of v so that, for each edge (v, w) , all integers assigned to vertex *v* differ from all integers assigned to vertex *w* by more than $b(v, w)$. The maximum integer assigned to vertices is called the span of the coloring. The *b*-coloring problem asks to find a *b*-coloring of a given graph *G* with the minimum span. In the paper, we present four efficient approximation algorithms for the problem, which have theoretical performance guarantees for the computation time, the span of a found *b*-coloring and the approximation ratio. We also obtain several upper bounds on the minimum span, expressed in terms of the maximum *b*-degrees, one of which is an extension of Brooks' theorem on an ordinary coloring.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

An ordinary coloring of a graph *G* assigns each vertex a color so that, for each edge *(v, w)*, the color assigned to *v* differs from the color assigned to *w* [\[19\].](#page--1-0) The problem of finding a coloring of a graph *G* with the minimum number *χ(G)* of colors often appears in the scheduling, task-allocation, etc. [\[9,17,19\];](#page--1-0) *χ(G)* is called the *chromatic number* of *G*. However, the problem is NP-hard, and it is difficult to find a good approximate solution. More precisely, for all $\epsilon > 0$, approximating the chromatic number $\chi(G)$ within $n^{1-\epsilon}$ is NP-hard [\[4,20\],](#page--1-0) where *n* is the number of vertices in *G*.

In this paper we deal with a generalized coloring, called a "bandwidth consecutive multicoloring" [\[15\].](#page--1-0) Each vertex *v* of a graph G has a positive integer weight $b(v)$, while each edge (v, w) of G has a non-negative integer weight $b(v, w)$. A *bandwidth consecutive multicoloring F* of *G* is an assignment of positive integers to vertices such that

- (a) each vertex *v* of *G* is assigned a set $F(v)$ of $b(v)$ consecutive positive integers; and
- (b) for each edge *(v, w)* of *G*, all integers assigned to vertex *v* differ from all integers assigned to vertex *w* by more than $b(v, w)$, that is, $b(v, w) < |i - j|$ for any integers $i \in F(v)$ and $j \in F(w)$.

Most of the former problem formulations [5,11-14] except [\[15\]](#page--1-0) require $b(v, w) < |i - j|$ rather than $b(v, w) < |i - j|$, and hence our edge weight *b(v, w)* is one less than the conventional one. A bandwidth consecutive multicoloring *F* is simply called a *b*-*coloring* for a weight function *b*. The maximum integer assigned to vertices is called the *span* of a *b*-coloring *F* ,

* Corresponding author.

<http://dx.doi.org/10.1016/j.tcs.2015.07.052> 0304-3975/© 2015 Elsevier B.V. All rights reserved.

CrossMark

er
Science

E-mail addresses: bji70496.7582@gmail.com (Y. Obata), nishizekit@gmail.com (T. Nishizeki).

Fig. 1. (a) A graph *G* and its optimal *b*-coloring *F* , and (b) the optimal *b*-coloring *f* corresponding to *F* and an acyclic orientation of *G*.

and is denoted by span(*F*). The *b*-*chromatic number* $\chi_b(G)$ of a graph *G* is the minimum span over all *b*-colorings of *G*. A b-coloring F is called optimal if span(F) = $\chi_h(G)$. The b-coloring problem asks to find an optimal b-coloring of a given graph *G*. The ordinary vertex-coloring is merely a *b*-coloring such that $b(v) = 1$ for every vertex *v* and $b(v, w) = 0$ for every edge (v, w) . The "bandwidth coloring" or "channel assignment" is a *b*-coloring such that $b(v) = 1$ for every vertex *v* [\[13–15\].](#page--1-0) The "multicoloring" is a *b*-coloring such that $b(v, w) = 0$ for every edge (v, w) and the set of integers assigned to a vertex are not necessarily consecutive. In Fig. 1(a), a vertex is drawn as a circle, in which the weight is written, while an edge is drawn as a straight line segment, to which the weight is attached. The *b*-chromatic number *χ^b (G)* of the graph *G* in Fig. 1(a) is 10, and an optimal *b*-coloring *F* of *G* with span(*F*) = 10 is drawn in Fig. 1(a), where a set $F(v)$ is attached to each vertex *v*.

A *b*-coloring problem often arises in the assignment of radio channels of cellular communication systems [\[13–15\]](#page--1-0) and in the non-preemptive task scheduling [\[17\].](#page--1-0) The $b(v)$ consecutive integers assigned to a vertex *v* correspond to the contiguous bandwidth of a channel *v* or a consecutive time period of a task *v*. The weight $b(v, w)$ assigned to edge (v, w) represents the requirement that the frequency band or time period of ν must differ from that of w by more than $b(\nu, w)$. The span of an optimal *b*-coloring corresponds to the minimum total bandwidth or the minimum makespan.

The multicoloring problem can be solved in polynomial time for triangulated graphs and perfect graphs [\[1,7\]](#page--1-0) and in pseudo polynomial time for graphs with bounded tree-width [\[8\].](#page--1-0) The bandwidth coloring problem and hence the *b*-coloring problem is NP-hard even for graphs with bounded tree-width [\[14,15\],](#page--1-0) and hence there is no polynomial-time algorithm even for graphs with bounded tree-width unless $P = NP$. The *b*-coloring problem is strongly NP-hard for general graphs, and hence there is no FPTAS (fully polynomial-time approximation scheme) for general graphs. On the other hand, there is an FPTAS for graphs with bounded tree-width [\[15\].](#page--1-0) However, the computation time is very large; the FPTAS takes time $O(n^4/\epsilon^3)$ even for series-parallel graphs, where *n* is the number of vertices in a graph and ϵ is the approximation error rate. For a bandwidth coloring or multicoloring, several heuristics using tabu search and genetic methodologies have been proposed and experimentally compared on their performances [\[5,11,12\].](#page--1-0) Thus, it is desirable to obtain an efficient approximation algorithm with theoretical performance guarantees for the *b*-coloring problem, which runs in linear time or *O(m* log*n)* time, where *m* is the number of edges in a graph. (In the paper we assume that all integers arithmetic can be done in constant time.)

In this paper we first present four efficient approximation algorithms for the *b*-coloring problem, which have theoretical performance guarantees for the computation time, the span of a found *b*-coloring and the approximation ratio. The first algorithm **Color-1** finds a *b*-coloring *F* with span $(F) \leq (c-1)\chi_b(G)$ in linear time when a given graph *G* is ordinarily vertex*colored with* $c(≥ 2)$ colors. Hence, the approximation ratio of **Color-1** is at most $c − 1$, and is at most three particularly for planar graphs. The second algorithm **Color-2** is a variant of **Color-1**; **Color-2** tries all permutations of a given coloring of G. The third algorithm **Delta** finds a b-coloring F of a given graph G with span(F) $\leq \Delta_{1b}(G) + 1$ in time $O(m \log n)$, where $\Delta_{1b}(G)$ is a weighted version of the ordinary maximum degree $\Delta(G)$, called the "maximum uni-directional *b*-degree" of *G*. Thus $\chi_b(G) \leq \Delta_{1b}(G) + 1$ for every graph *G*. The approximation ratio of **Delta** is at most $\Delta(G) + 1$. The fourth algorithm **Degenerate** finds a b-coloring F with $\text{span}(F) \leq k+1$ in time $O(m \log \Delta(G))$ if G is a "(k, b)-degenerated graph", a weighted version of an ordinary *k*-degenerated graph [\[9\].](#page--1-0) It implies that $\chi_b(G) \leq \Delta_{2b}(G) + 1$ for every graph *G*, where $\Delta_{2b}(G)$ is another weighted version of $\Delta(G)$, called the "maximum bi-directional *b*-degree" of *G*. The approximation ratio of **Degenerate** is at most $2\Delta(G) + 1$. We then show that an optimal *b*-coloring can be found in linear time for every graph *G* with $\Delta(G) \leq 2$, and finally present a *b*-coloring analogue of the famous Brooks' theorem on an ordinary coloring [\[9,19\].](#page--1-0) An early version of the paper was presented at a workshop [\[16\].](#page--1-0)

2. Preliminaries

In this section, we define several terms and present a known result.

Let $G = (V, E)$ be a simple undirected graph with vertex set V and edge set E. Let $n = |V|$ and $m = |E|$ throughout the paper. For two integers *α* and *β*, we denote by [*α*, *β*] the set of all integers *z* with $\alpha \le z \le \beta$. Let N be the set of all positive integers, that are regarded as colors.

Download English Version:

<https://daneshyari.com/en/article/435665>

Download Persian Version:

<https://daneshyari.com/article/435665>

[Daneshyari.com](https://daneshyari.com)