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1. Introduction

An ordinary coloring of a graph G assigns each vertex a color so that, for each edge (v, w), the color assigned to v
differs from the color assigned to w [19]. The problem of finding a coloring of a graph G with the minimum number y (G)
of colors often appears in the scheduling, task-allocation, etc. [9,17,19]; x (G) is called the chromatic number of G. However,
the problem is NP-hard, and it is difficult to find a good approximate solution. More precisely, for all € > 0, approximating
the chromatic number x (G) within n'~€ is NP-hard [4,20], where n is the number of vertices in G.

In this paper we deal with a generalized coloring, called a “bandwidth consecutive multicoloring” [15]. Each vertex v of
a graph G has a positive integer weight b(v), while each edge (v, w) of G has a non-negative integer weight b(v, w). A
bandwidth consecutive multicoloring F of G is an assignment of positive integers to vertices such that

(a) each vertex v of G is assigned a set F(v) of b(v) consecutive positive integers; and
(b) for each edge (v, w) of G, all integers assigned to vertex v differ from all integers assigned to vertex w by more than
b(v, w), that is, b(v, w) < |i — j| for any integers i € F(v) and j € F(w).

Most of the former problem formulations [5,11-14] except [15] require b(v, w) < |i — j| rather than b(v, w) < |i — j|, and
hence our edge weight b(v, w) is one less than the conventional one. A bandwidth consecutive multicoloring F is simply
called a b-coloring for a weight function b. The maximum integer assigned to vertices is called the span of a b-coloring F,
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Fig. 1. (a) A graph G and its optimal b-coloring F, and (b) the optimal b-coloring f corresponding to F and an acyclic orientation of G.

and is denoted by span(F). The b-chromatic number x,(G) of a graph G is the minimum span over all b-colorings of G.
A b-coloring F is called optimal if span(F) = x,(G). The b-coloring problem asks to find an optimal b-coloring of a given
graph G. The ordinary vertex-coloring is merely a b-coloring such that b(v) =1 for every vertex v and b(v, w) =0 for
every edge (v, w). The “bandwidth coloring” or “channel assignment” is a b-coloring such that b(v) =1 for every vertex v
[13-15]. The “multicoloring” is a b-coloring such that b(v, w) =0 for every edge (v, w) and the set of integers assigned to
a vertex are not necessarily consecutive. In Fig. 1(a), a vertex is drawn as a circle, in which the weight is written, while an
edge is drawn as a straight line segment, to which the weight is attached. The b-chromatic number x;,(G) of the graph G
in Fig. 1(a) is 10, and an optimal b-coloring F of G with span(F) = 10 is drawn in Fig. 1(a), where a set F(v) is attached to
each vertex v.

A b-coloring problem often arises in the assignment of radio channels of cellular communication systems [13-15] and in
the non-preemptive task scheduling [17]. The b(v) consecutive integers assigned to a vertex v correspond to the contiguous
bandwidth of a channel v or a consecutive time period of a task v. The weight b(v, w) assigned to edge (v, w) represents
the requirement that the frequency band or time period of v must differ from that of w by more than b(v, w). The span of
an optimal b-coloring corresponds to the minimum total bandwidth or the minimum makespan.

The multicoloring problem can be solved in polynomial time for triangulated graphs and perfect graphs [1,7] and in
pseudo polynomial time for graphs with bounded tree-width [8]. The bandwidth coloring problem and hence the b-coloring
problem is NP-hard even for graphs with bounded tree-width [14,15], and hence there is no polynomial-time algorithm
even for graphs with bounded tree-width unless P = NP. The b-coloring problem is strongly NP-hard for general graphs,
and hence there is no FPTAS (fully polynomial-time approximation scheme) for general graphs. On the other hand, there
is an FPTAS for graphs with bounded tree-width [15]. However, the computation time is very large; the FPTAS takes time
0(n*/e3) even for series-parallel graphs, where n is the number of vertices in a graph and € is the approximation er-
ror rate. For a bandwidth coloring or multicoloring, several heuristics using tabu search and genetic methodologies have
been proposed and experimentally compared on their performances [5,11,12]. Thus, it is desirable to obtain an efficient
approximation algorithm with theoretical performance guarantees for the b-coloring problem, which runs in linear time or
O (mlogn) time, where m is the number of edges in a graph. (In the paper we assume that all integers arithmetic can be
done in constant time.)

In this paper we first present four efficient approximation algorithms for the b-coloring problem, which have theoreti-
cal performance guarantees for the computation time, the span of a found b-coloring and the approximation ratio. The first
algorithm Color-1 finds a b-coloring F with span(F) < (c—1) x;(G) in linear time when a given graph G is ordinarily vertex-
colored with c(> 2) colors. Hence, the approximation ratio of Color-1 is at most ¢ — 1, and is at most three particularly for
planar graphs. The second algorithm Color-2 is a variant of Color-1; Color-2 tries all permutations of a given coloring of
G. The third algorithm Delta finds a b-coloring F of a given graph G with span(F) < A15(G) 4+ 1 in time O (mlogn), where
A1p(G) is a weighted version of the ordinary maximum degree A(G), called the “maximum uni-directional b-degree” of G.
Thus x5(G) < A1p(G) +1 for every graph G. The approximation ratio of Delta is at most A(G) + 1. The fourth algorithm De-
generate finds a b-coloring F with span(F) <k + 1 in time O(mlog A(G)) if G is a “(k, b)-degenerated graph”, a weighted
version of an ordinary k-degenerated graph [9]. It implies that x,(G) < A,p(G) + 1 for every graph G, where Ay, (G) is
another weighted version of A(G), called the “maximum bi-directional b-degree” of G. The approximation ratio of Degen-
erate is at most 2A(G) + 1. We then show that an optimal b-coloring can be found in linear time for every graph G with
A(G) <2, and finally present a b-coloring analogue of the famous Brooks’ theorem on an ordinary coloring [9,19]. An early
version of the paper was presented at a workshop [16].

2. Preliminaries

In this section, we define several terms and present a known result.

Let G = (V, E) be a simple undirected graph with vertex set V and edge set E. Let n =|V| and m = |E| throughout the
paper. For two integers o and 8, we denote by [«, 8] the set of all integers z with o <z < 8. Let N be the set of all positive
integers, that are regarded as colors.
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