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One aspect of DNA Computing is the possibility of using DNA molecules for solving some 
“complicated” computational problems. In this context, the DNA code word design problem
assumes a fundamental role: given a problem encoded in DNA strands and biochemical 
processes, the final computation is a concatenation of the input DNA strands that must 
allow us to recover the solution of the given problem in terms of the input (unique 
decipherability). Thus the initial set of DNA strands must be a code. In addition, it 
should satisfy some restrictions, called here DNA properties, in order to prevent them 
from interacting in undesirable ways. So a new interest towards the design of efficient 
algorithms for testing whether a language X is a code, has arisen from (wet) DNA 
Computing, but, as far as we know, only when X is a finite set. In this paper we provide 
an algorithm for testing whether an infinite but regular set of words is a code that avoids 
some DNA properties among unwanted intermolecular and intramolecular hybridizations.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Variable-length codes were investigated in depth for the first time by Schützenberger (1955), by linking the theory of 
codes with classical noncommutative algebra. Informally, given a finite alphabet �, a code is a set of words X on � such 
that any message composed from its elements is uniquely decipherable (UD) and so X guarantees a secure and economic 
transmission. Sardinas and Patterson [26] characterized codes through a decidable property for a regular set. When X is 
a finite set, efficient algorithms have been designed for testing the UD property, by using different approaches (see [4]). 
Others are known in the regular case [3,4,12,22].

Recently a new interest with respect to the design and implementation of efficient algorithms for testing the UD prop-
erty has arisen from (wet) DNA Computing [1,24]. Briefly, every DNA molecule can be viewed as an oriented single-stranded 
sequence of nucleotides, i.e., a word over the finite alphabet � = {A, C, G, T }. The simple property of Watson–Crick com-
plementarity (C and T are respectively complementary to G and A, and vice versa), which allows the precise matching 
between two oppositely-oriented complementary strands, can be used to assemble DNA strands (hybridization). One aspect 
of DNA Computing is the possibility of using DNA molecules for solving some “complicated” computational problems (like 
showed by Adleman in his seminal paper [1]). Briefly, in [1] a small instance of the Hamiltonian Path Problem, a well-known 
NP-complete problem, has been solved by encoding vertices and edges of the graph into a set of suitable molecules. So the 
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solution, if exists, is nothing but a concatenation of initial molecules, and it has been obtained by biochemical processes, 
such as Gel Electrophoresis, Length Separation, Polymerase Chain Reaction (PCR). Thus, the input data in DNA Computing 
must be encoded into the form of single or double DNA strands. Due to the importance of this step for the success of 
computations, much attention has been devoted to define suitable sets of code words.

Two different approaches have been adopted in the literature to investigate “good” DNA encodings. In [9], solutions based 
on biochemical conditions have been proposed (see also [21] and the bibliography of [9]). Here we follow the theoretical 
approach of [14–18], where the problem is faced from a formal language point of view, by defining a list of properties of 
words and languages, which if fulfilled by a given set of DNA strands, can guarantee the robustness during computation. In 
order to be used for the encoding of the problem, the first property that a set of words should have is the UD property. 
Otherwise, starting from the final computation, when it is a concatenation of the input DNA strands, we are not able 
to uniquely recover the solution of the problem. In addition, as complementary parts of single strands can bind together 
forming a double stranded DNA sequence, we have to impose some restrictions (in the sequel called DNA properties) on these 
sets of code words languages to prevent them from interacting in undesirable ways. Two classes of hybridizations may be 
considered: intermolecular hybridizations, i.e., two different single stranded bind together, forming a double-stranded DNA 
molecule; intramolecular hybridization, i.e., a piece of a long single stranded molecule hybridizes with another piece of the 
same molecule. As an example, hairpins occur when a factor of a long single stranded DNA molecule is complementary 
to another factor of the same length. In both situations these hybridizations are unwanted for DNA Computing, since the 
obtained molecules cannot be used for encoding information. (Another aspect, which will not be considered here, is that 
molecular processes are not error-free: two DNA sequences which are not perfectly Watson–Crick complementary may 
hybridize, producing false positives or negatives.) Among them, θ -compliance, θ -freedom and θ -k-hairpin-freeness have been 
defined, where θ is a morphism or antimorphism on the alphabet and k is a positive integer. The first two properties avoid 
two intermolecular hybridizations for which the Watson–Crick complement of a word v in X cannot be a factor of another 
word of X (resp. the concatenation of two words of X). It is already known that the problem of deciding whether a regular 
language X is θ -compliant or θ -free is decidable and can be solved in quadratic time with respect to the size of a finite 
state automaton recognizing X [14]. The θ -k-hairpin-freeness property guarantees that no word of the language contains 
both a factor v and its involution θ(v). Obviously, the length of v is a parameter with respect to considering the property 
(otherwise, the property could be trivial, e.g., when k = 1). Thus, more precisely, a language L is θ -k-hairpin-free if there 
exists no word v such that v and θ(v) are factors of the same word in L, with |v| ≥ k ≥ 1 and θ is an involution. In this 
way, we require that “long” factors do not hybridize and we decide how long they are by fixing k. It is known that it is 
possible to decide whether a regular language is θ -k-hairpin-free, for a given involution θ and an integer k.

For the sake of completeness, we must say that in the literature hairpins are not everywhere considered “bad”. As an 
example, in [25] hairpins are used for performing computation and so it is crucial to design algorithms for generating 
words with hairpins, as well as the hairpin completion operation [5,20]. Our paper does not investigate hairpins from this 
“positive” point of view.

As far as we know, all known algorithms and implementations for testing intermolecular properties have been designed 
when X is a finite language [19,23]. It is evident that, for practical usage, only finite sets should be considered. Nevertheless, 
larger and larger instances of NP-complete problems are coded through a (big) set of different words satisfying DNA prop-
erties. In addition, consider a finite set X which has been verified to be “good” for DNA computing. If we need to increase 
the instance of only one word w , and so we examine X ∪ {w}, we must check again the whole set X ∪ {w} w.r.t. the DNA 
properties and the UD property. On the contrary, it could be more useful to test DNA properties of an infinite set of DNA 
words, which have the same structural description, provided by a regular expression. In this way, we have a regular infinite 
set X which is a code satisfying some DNA properties, we can choose any subset Y of X to encode our problem, and we 
can add any word from X to Y , maintaining the goodness of our set. Furthermore, the set X is not a list of many different 
words, but it is described by a succinct regular expression. This is our motivation for effectively testing DNA properties on 
regular infinite sets.

In this perspective, we firstly consider the UD property, a necessary property for good encodings. It cannot be efficiently 
tested for a regular set, if X is given by an ambiguous automaton (otherwise, if X is given by an unambiguous automaton, 
efficient techniques are known [4]). In [6], the authors used the algorithm of [22] for testing UD property, that presents many 
advantages w.r.t. others (see Section 3 for details). In addition, McCloskey’s technique has been also used in the same paper 
for testing the two intermolecular properties above mentioned. The time complexity of the algorithm is O (n2), where n is 
the size of the finite state automaton recognizing X . Following the approach of CodeGen [19], in [6] a Java implementation 
is also provided, which takes care of space requirements for implementing automata. The software implements automata by 
using primitive data types and no external library.

This paper extends results presented in [6], where only intermolecular hybridizations were considered. Here we also 
present an algorithm and its implementation for testing θ -k-hairpin-freeness property for regular languages, based on com-
mon characteristics of algorithms for intermolecular properties developed in [6]. The implementation of [6] has been revised 
for guarantee a unified approach to the detection of the whole properties considered in this paper.

The paper is organized as follows. In Section 2 we gathered basics on words, automata and codes. Sections 3–6 review 
the results of [6] by fixing definitions and providing lacking proofs. Precisely, Section 3 presents the problem of testing the 
UD property and the algorithm of [22] is detailed in Section 4. DNA properties are defined in Section 5 and Section 6 shows 
how we can test them on a regular set. Section 7 regards detection of hairpin-free languages. Conclusions give a glance 
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