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This paper considers the k-sink location problem in dynamic path networks. A dynamic 
path network consists of an undirected path with positive edge lengths, uniform edge 
capacity, and positive vertex supplies. A path can be considered as a road, edge lengths 
as the distance along a road segment and vertex supplies as the number of people at a 
location. The edges all have a fixed common capacity, which limits the number of people 
that can enter that edge in a unit of time. The problem is to find the optimal location of k
sinks (exits) on the path such that each evacuee is sent to one of the k sinks. The existence 
of capacities causes congestion, which can slow evacuation down in unexpected ways.
Let x be a vector denoting the location of the k sinks. The optimal evacuation policy for 
x is (k − 1)-dimensional vector d, called (k − 1)-divider. Each component of d corresponds 
to a boundary dividing all evacuees between adjacent two sinks into two groups, i.e., all 
supplies to the right of the boundary evacuate to the right sink and all the others to the left 
sink. In this paper, we consider optimality defined by two different criteria, the minimax 
criterion and the minisum one. We prove that the minimax problem can be solved in 
O (kn) time and the minisum problem in O (n2 · min{√k log n + log n, 2

√
log k log log n}) time, 

where n is the number of vertices in the given network.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The Tohoku-Pacific Ocean Earthquake occurred on March 11, 2011. Many people in Japan failed to evacuate from the coast 
and lost their lives to the resultant tsunamis. From the viewpoint of city planning it has now become extremely important 
to establish effective evacuation planning for large scale disasters. In particular, arrangements for designating evacuation 
buildings in large Japanese cities near the coast where people can go in case of tsunami warnings have become urgent 
issues. To determine appropriate tsunami evacuation buildings, we need to consider both where the evacuation buildings 
should be located and who will evacuate to which building, i.e., how to partition a large area into small regions so that 
everyone in a particular region evacuates to a designated building.

Modeled as a graph, this problem leads to some very interesting algorithmic questions. This paper focuses on the problem 
of locating the evacuation buildings in the simplest case of the region being restricted to a single path (road).

✩ A preliminary version of this paper appeared in the proceedings of AAIM 2014 [5].
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Fig. 1. Illustration of evacuation on a two edge path. All supplies on vertices v and s evacuate to a vertex u. The problem starts with w v units of supply at 
vertex v and ws units of supply at vertex s. All edges have capacity c.

The problem can be modeled in the dynamic setting in graph networks, which was first introduced by Ford et al. [2]
in the context of maximum dynamic flows, studying how long it would take to move flow across a network. In a graph 
network under the dynamic setting, each vertex has an associated supply and each edge has both a length and a capacity 
which limits the rate of the flow into the edge per unit time. Such networks are called dynamic networks.

Dynamic networks can be considered in both discrete and continuous models. In the discrete model, all values are 
integers. Each supply can be regarded as a set of evacuees, and edge capacity is defined as the maximum number of 
evacuees who can enter an edge per unit time. In the continuous model, each input value is given as a real number. Supply 
can be regarded as fluid, and edge capacity is defined as the maximum amount of supply which can enter an edge per unit 
time.

Unlike in the dynamic max flow problem which can split flow along different paths, our models assume that all supply 
from a vertex gets sent along the same path (and therefore all go to the same sink). This is because in the evacuation 
context, all people at a location should follow the same evacuation plan.

Also, unlike in static problems, the time required to move supply from one vertex to a sink can be increased due to 
congestion caused by the capacity constraints, which require supplies to wait at vertices until supplies preceding them have 
left.

The k-sink location problem in dynamic networks is defined as the problem of finding the optimal location of k sinks in a 
given network (along with the paths that supplies at each vertex will follow) so that all supplies of all vertices are sent to 
one of the k sinks in the shortest time. The definition of shortest in the above is slightly ambiguous. There are two natural 
definitions: maximum cost criterion and total cost criterion.

We illustrate these definitions in the 1-sink location problem and give formal definitions for general k-sink problem 
later. Let x be the location of the single sink. In the discrete version the cost of x for a particular evacuee is defined as the 
minimum time required to send that evacuee to x. Note that due to congestion this cost can depend upon the paths taken 
by supplies from other vertices. The maximum cost is just the maximum evacuation time over all evacuees. The total cost is 
the sum of all of the evacuees evacuation times.

In the continuous model, we define a unit as an infinitesimally small portion of supply with evacuation cost being 
defined on each unit. The cost of x for a unit is defined as the minimum time required to send the unit to x. The maximum 
cost and total cost are then naturally the maximum cost and sum of costs over all units.

We remark that our minimax (resp. minisum) sink location problem are generalizations of the NP-Hard unweighted 
k-center (resp. k-median) problem in static networks [8]. More specifically, if each edge capacity is sufficiently large, our 
problems reduce to the k-center or k-median problem, respectively.

Recently, several researchers have studied the minimax sink location problem in dynamic networks. Mamada et al. [7]
studied the minimax 1-sink location problem in dynamic tree networks assuming that the sink must be located at a vertex, 
and proposed an O (n log2 n) time algorithm. Higashikawa et al. [4] also studied the same problem as [7] assuming that 
edge capacity is uniform and the sink can be located at any point in a network, and proposed an O (n log n) time algorithm. 
However, the minisum sink location problem in dynamic networks has never been studied so far.

In this paper, we study the k-sink location problems in dynamic path networks in the continuous model assuming that 
edge capacities are uniform, i.e., all edge capacities are identical. We also allow the sinks to be located at any point in a 
network, i.e., they can lie on an edge and do not have to be one of the path vertices. We prove that the minimax problem 
can be solved in O (kn) time and the minisum problem can be solved in O (n2 · min{√k log n + log n, 2

√
log k log log n}) time. 

Note that this study is the first one which treats the minisum sink location problem in dynamic networks and also gives an 
exact algorithm for the minimax k-sink location problem in dynamic networks.

2. Minimax k-sink location problem

2.1. Preliminaries

Model definition: Let P = (V , E) be an undirected path with ordered vertices V = {v1, v2, . . . , vn} and edges E =
{e1, e2, . . . , en−1} where ei = (vi, vi+1) for 1 ≤ i ≤ n − 1. Let N = (P , l, w, c, τ ) be a dynamic network with the underly-
ing path graph P ; l is a function that associates each edge ei with positive length li , w is a function that associates each 
vertex vi with positive weight wi , amount of supply at vi ; c is the capacity, a positive constant representing the amount of 
supply which can enter an edge per unit time; τ is a positive constant representing the time required for a flow to travel 
distance one. We call such networks with path structures dynamic path networks.

As a simple illustration, let us consider Fig. 1. All supplies on vertices v and s are both evacuating to a vertex u. It takes 
time τ l1 for a unit of supply to cross the edge (u, v) and τ l2 to cross the edge (v, s). Since the amount of supply which 
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