
Science of Computer Programming 74 (2009) 723–753

Contents lists available at ScienceDirect

Science of Computer Programming

journal homepage: www.elsevier.com/locate/scico

Efficient symbolic computation of process expressions
Benoît Fraikin ∗, Marc Frappier
GRIL, Département d’Informatique, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1

a r t i c l e i n f o

Article history:
Received 27 February 2006
Received in revised form 13 February 2009
Accepted 14 February 2009
Available online 27 February 2009

Keywords:
Trace-based specifications
Black-box specifications
Process algebra
Information systems
Symbolic computation
Interpreter

a b s t r a c t

This paper describes three optimization techniques for the eb3 process algebra. The
optimizations are expressed in a new deterministic operational semantics which is shown
to be trace-equivalent to a traditional non-deterministic operational semantics. Internal
action transitions are eliminated by an efficient preruntime analysis of the structure of a
process expression. Execution environments are used to optimize variable instantiation
using lazy evaluation. Non-determinism is eliminated by returning a choice between
possible transitions. This new operational semantics is implemented in the eb3 pai process
algebra interpreter to support the eb3 method. The goal of this method is to automate the
development of information systems using, among other mechanisms, efficient symbolic
computation of process expressions.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The project eb3pai (which stands for eb3 Process Algebra Interpreter) is part of the apis research project [1]. The objective
of apis is to support the rapid development of information systems (IS) from formal specifications by using code generation
and efficient specification execution. apis is based on the eb3 (Entity-Based Black Box) method [2], which was specifically
designed for IS specification.
In our viewpoint, an IS is a software system that helps an organization to collect and manipulate all its relevant data. IS

are used in almost all areas of human activities where informationmust be stored, exploited and analyzed. Typical examples
include management IS (e.g. accounting, human resource and production) which are used to support the business process
of an organization.
An information system is generally characterized by large persistent data structures which are modified or queried by

several users in concurrency. The distinctive characteristics of IS consist in managing complex relationships between data
structures, of calculations involving several data structures, of processing large volume of data, and of preserving data
integrity through concurrent updates. IS typically have little hard real-time constraints. Modern database management
systems provide concurrency control mechanisms which simplify IS development.
An eb3 specification consists essentially of two parts: (i) a process expression, calledmain, which defines the valid input

traces of the IS, (ii) input–output (I–O) rules which assign an output to each input trace. The semantics of an eb3 specification
is given by a relation R defined on I+×O, where I+ denotes the set of non-empty traces defined over input set I andO denotes
an output set. Hence, process expressionmain defines the domain of R; in eb3, a process algebra is used solely to define the
inputs.
The eb3 process algebra is inspired from regular expressions, CSP [3], CCS [4], ACP [5] and Lotos [6]. For instance, the

process expression a � (b | c), where | and � correspond to the well-known regular expression operators choice and

∗ Corresponding author. Tel.: +1 819 821 8000.
E-mail address: benoit.fraikin@USherbrooke.CA (B. Fraikin).
URL: http://www.dmi.usherb.ca/∼gril (B. Fraikin).

0167-6423/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.scico.2009.02.002

http://www.elsevier.com/locate/scico
http://www.elsevier.com/locate/scico
mailto:benoit.fraikin@USherbrooke.CA
http://www.dmi.usherb.ca/~gril
http://www.dmi.usherb.ca/~gril
http://www.dmi.usherb.ca/~gril
http://www.dmi.usherb.ca/~gril
http://www.dmi.usherb.ca/~gril
http://www.dmi.usherb.ca/~gril
http://dx.doi.org/10.1016/j.scico.2009.02.002

724 B. Fraikin, M. Frappier / Science of Computer Programming 74 (2009) 723–753

concatenation, denotes the input traces {a, ab, ac}. Given some input–output rules (omitted here), a relation R = {(a 7→ o1),
(ab 7→ o2), (ac 7→ o3)} is associated to this specification. This specification means that the IS, from its initial state, must
accept user input a and provide output o1; if some other input is submitted by the user, it must be rejected and the user
must be informed by an appropriate errormessage [7]. After accepting a, the ISmust accept user input b and produce output
o2, or accept c and produce output o3. A system is said to be correct with respect to a specification R if it can accept all input
traces t in the domain of R (i.e. a trace ofmain) and produce, for each t , an output o such that (t 7→ o) ∈ R.
We are currently working on effective tools to support eb3. The tool eb3pai is an interpreter for eb3 process expressions.

eb3pai relies on several optimization techniques to handle non-deterministic process expressions, internal actions and
quantified operators like choice and parallel composition with synchronization.

eb3pai executes an action by applying the transition rules of an operational semantics (in the Plotkin style used for
CCS [4]) defined for the eb3 process algebra. Basically, eb3pai efficiently computes on the fly a proof of a transition E

σ
−→ E ′

to determine whether process expression E can accept user input σ . If σ can be accepted, then E ′ becomes the resulting
process expression on which the next input is applied; otherwise σ is discarded and the current process expression does
not change. Hence, eb3pai does not generate executable code to execute a process expression; rather, it is itself an abstract
machine that executes a process expression. The state of the abstract machine is the abstract syntax tree (AST) of E.
The original operational semantics of the eb3 process algebra, proposed in [2], is not adequate for an efficient symbolic

computation. This paper proposes a new set of transition rules on which eb3pai is based. The transition rules of [2] suffer
from three main problems.
First, they allownon-determinism,whichmeans that an action can sometimes be executed by several transitions, leading

to different process expressions. Since the eb3 process expressionmain defines the traces thatmust be accepted by the IS, an
interpretermust find the appropriate execution path to accept a given trace. A naive interpreter based on the rules of [2]must
sometimes backtrack and try other execution paths for past (accepted) actions, in order to accept a new one. Note that we
are dealing here with process expression non-determinism, which is distinct from I–O rules non-determinism. I–O rules allows
for the specification of several outputs for a given input trace, which is sometimes desirable for IS specification. For instance,
in a travel agency, the choice of the ordering for a list of flights which match a set of criteria maybe non-deterministic.
Second, internal actions, which are not visible to the environment, can also require the interpreter to backtrack, or they

can induce infinite loops (divergence) when trying to execute an action.
Third, the rules of [2] use syntactic substitution on the AST, which means that every occurrence of a variable is replaced

by its substituted term. This can lead to significant overhead in transition computation and high memory usage for large
interleave quantifications, because each interleaved process differs from the others only in the substituted text (cf. Fig. 4 in
Section 4.2).
The proposed set of rules is proved to be trace-equivalent to the one defined in [2]. These new rules are more complex,

because they are meant to be used for efficient execution. They have been implemented in eb3pai in order to evaluate their
efficiency from an experimental standpoint, taking into account practical implementation issues like persistency of large
ASTs, large quantification sets, and memory usage in order to minimize redundancy.
For various patterns of IS ([2], Section 5) which are derived from the structure of the business model (entity-relationship

model), eb3pai can execute an action in linear time with respect to the size of the specification (i.e. the number of terms and
operators in the process expression) and logarithmic time with respect to the number of entities of an entity type in the
business model. The current version of eb3pai is implemented in Java; it uses the OODBMS ObjectStore PSE PRO (which is
also implemented in Java) to handle the persistency of its internal state (i.e. an AST) and large collections of objects.
A companion paper [8] proposes algorithms to efficiently execute large interleave quantifications,which are fundamental

components of an IS. Large interleave quantifications are used to model the entities (i.e. instances or objects) of an entity
type (i.e. class) and the relationships between entity types. An entity type in an IS can easily contain thousands of entities.
The apis framework supports the eb3 method; it includes eb3pai and other components which are illustrated in Fig. 1.

A complete eb3 specification includes five elements represented in the upper part of the figure. The user interacts with
the IS through a web interface generated by dci-web [9] from a formal specification of the user interface interaction. The
web interface calls eb3pai to determine if the user input is valid. eb3pai tries to execute this input event on the process
expression. If it succeeds, it calls an update programwhich has been generated by eb3tg [10] to update a relational database
that contains the value of IS entity attributes and then calls a query program to compute the output associated to this input
event; if eb3pai fails to accept the input event, it reports an informative message to explain the error to the user. Entity
attributes are formally specified by recursive functions on the set of traces accepted bymain. Entity types are defined by an
entity-relationship (ER) diagram. Component eb3io is under development.
The eb3 process algebra differs in a number of aspects from traditional process algebras, in order to streamline the

specification of IS. The first important distinction, as illustrated in Fig. 1, is that outputs are not specified using the process
algebra, but from recursive functions defined on input traces. A process algebra provides operators to define ordering
constraints on actions that can communicate with the environment; it does not include state variables like those found in
a state-machine language like B [11] or Z [12]. It has been recognized by several authors that data management is hard
to specify using solely a process algebraic approach. A number of proposals were made to combine a process algebra
with a state-machine specification language to manage data. The key idea is that process algebra operators define the
ordering of actions; state variables and state-machine operations manage the data. The CSP‖B [13] approach combines a
CSP specification with a B specification [11]. CSP actions are matched with B operations; when a CSP action is executed,

Download	English	Version:

https://daneshyari.com/en/article/435758

Download	Persian	Version:

https://daneshyari.com/article/435758

Daneshyari.com

https://daneshyari.com/en/article/435758
https://daneshyari.com/article/435758
https://daneshyari.com/

