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1. Introduction

The project Es>pal (which stands for B> Process Algebra Interpreter) is part of the ApIs research project [ 1]. The objective
of APIs is to support the rapid development of information systems (IS) from formal specifications by using code generation
and efficient specification execution. APIs is based on the B> (Entity-Based Black Box) method [2], which was specifically
designed for IS specification.

In our viewpoint, an IS is a software system that helps an organization to collect and manipulate all its relevant data. IS
are used in almost all areas of human activities where information must be stored, exploited and analyzed. Typical examples
include management IS (e.g. accounting, human resource and production) which are used to support the business process
of an organization.

An information system is generally characterized by large persistent data structures which are modified or queried by
several users in concurrency. The distinctive characteristics of IS consist in managing complex relationships between data
structures, of calculations involving several data structures, of processing large volume of data, and of preserving data
integrity through concurrent updates. IS typically have little hard real-time constraints. Modern database management
systems provide concurrency control mechanisms which simplify IS development.

An B specification consists essentially of two parts: (i) a process expression, called main, which defines the valid input
traces of the IS, (ii) input-output (I-0) rules which assign an output to each input trace. The semantics of an Es> specification
is given by a relation R defined on It x 0, where I denotes the set of non-empty traces defined over input set I and O denotes
an output set. Hence, process expression main defines the domain of R; in EB>, a process algebra is used solely to define the
inputs.

The EB® process algebra is inspired from regular expressions, CSP [3], CCS [4], ACP [5] and Lotos [6]. For instance, the
process expression a . (b | ¢), where | and . correspond to the well-known regular expression operators choice and
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concatenation, denotes the input traces {a, ab, ac}. Given some input-output rules (omitted here), arelationR = {(a — 01),
(ab — 03), (ac — 03)} is associated to this specification. This specification means that the IS, from its initial state, must
accept user input a and provide output o4; if some other input is submitted by the user, it must be rejected and the user
must be informed by an appropriate error message [7]. After accepting a, the IS must accept user input b and produce output
03, or accept ¢ and produce output os. A system is said to be correct with respect to a specification R if it can accept all input
traces t in the domain of R (i.e. a trace of main) and produce, for each t, an output o such that (t — o) € R.

We are currently working on effective tools to support EB>. The tool EB>PAI is an interpreter for EB> process expressions.
EB>PAI relies on several optimization techniques to handle non-deterministic process expressions, internal actions and
quantified operators like choice and parallel composition with synchronization.

EB3PAI executes an action by applying the transition rules of an operational semantics (in the Plotkin style used for

CCS [4]) defined for the EB> process algebra. Basically, Es>paI efficiently computes on the fly a proof of a transition E 5 F
to determine whether process expression E can accept user input o. If o can be accepted, then E’ becomes the resulting
process expression on which the next input is applied; otherwise o is discarded and the current process expression does
not change. Hence, EB>PAI does not generate executable code to execute a process expression; rather, it is itself an abstract
machine that executes a process expression. The state of the abstract machine is the abstract syntax tree (AST) of E.

The original operational semantics of the EB* process algebra, proposed in [2], is not adequate for an efficient symbolic
computation. This paper proposes a new set of transition rules on which Es>par is based. The transition rules of [2] suffer
from three main problems.

First, they allow non-determinism, which means that an action can sometimes be executed by several transitions, leading
to different process expressions. Since the Es* process expression main defines the traces that must be accepted by the IS, an
interpreter must find the appropriate execution path to accept a given trace. A naive interpreter based on the rules of [2] must
sometimes backtrack and try other execution paths for past (accepted) actions, in order to accept a new one. Note that we
are dealing here with process expression non-determinism, which is distinct from I-0 rules non-determinism. I-0 rules allows
for the specification of several outputs for a given input trace, which is sometimes desirable for IS specification. For instance,
in a travel agency, the choice of the ordering for a list of flights which match a set of criteria maybe non-deterministic.

Second, internal actions, which are not visible to the environment, can also require the interpreter to backtrack, or they
can induce infinite loops (divergence) when trying to execute an action.

Third, the rules of [2] use syntactic substitution on the AST, which means that every occurrence of a variable is replaced
by its substituted term. This can lead to significant overhead in transition computation and high memory usage for large
interleave quantifications, because each interleaved process differs from the others only in the substituted text (cf. Fig. 4 in
Section 4.2).

The proposed set of rules is proved to be trace-equivalent to the one defined in [2]. These new rules are more complex,
because they are meant to be used for efficient execution. They have been implemented in EB>pal in order to evaluate their
efficiency from an experimental standpoint, taking into account practical implementation issues like persistency of large
ASTs, large quantification sets, and memory usage in order to minimize redundancy.

For various patterns of IS ([2], Section 5) which are derived from the structure of the business model (entity-relationship
model), EB>PAI can execute an action in linear time with respect to the size of the specification (i.e. the number of terms and
operators in the process expression) and logarithmic time with respect to the number of entities of an entity type in the
business model. The current version of EB>pal is implemented in Java; it uses the OODBMS ObjectStore PSE PRO (which is
also implemented in Java) to handle the persistency of its internal state (i.e. an AST) and large collections of objects.

A companion paper [8] proposes algorithms to efficiently execute large interleave quantifications, which are fundamental
components of an IS. Large interleave quantifications are used to model the entities (i.e. instances or objects) of an entity
type (i.e. class) and the relationships between entity types. An entity type in an IS can easily contain thousands of entities.

The ap1s framework supports the EB> method; it includes EB3par and other components which are illustrated in Fig. 1.
A complete EB> specification includes five elements represented in the upper part of the figure. The user interacts with
the IS through a web interface generated by DcI-weB [9] from a formal specification of the user interface interaction. The
web interface calls EB>paI to determine if the user input is valid. EB>PAI tries to execute this input event on the process
expression. If it succeeds, it calls an update program which has been generated by EB>TG [ 10] to update a relational database
that contains the value of IS entity attributes and then calls a query program to compute the output associated to this input
event; if EB>PAI fails to accept the input event, it reports an informative message to explain the error to the user. Entity
attributes are formally specified by recursive functions on the set of traces accepted by main. Entity types are defined by an
entity-relationship (ER) diagram. Component EB>10 is under development.

The EB> process algebra differs in a number of aspects from traditional process algebras, in order to streamline the
specification of IS. The first important distinction, as illustrated in Fig. 1, is that outputs are not specified using the process
algebra, but from recursive functions defined on input traces. A process algebra provides operators to define ordering
constraints on actions that can communicate with the environment; it does not include state variables like those found in
a state-machine language like B [11] or Z [12]. It has been recognized by several authors that data management is hard
to specify using solely a process algebraic approach. A number of proposals were made to combine a process algebra
with a state-machine specification language to manage data. The key idea is that process algebra operators define the
ordering of actions; state variables and state-machine operations manage the data. The CSP||B [13] approach combines a
CSP specification with a B specification [11]. CSP actions are matched with B operations; when a CSP action is executed,
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