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Sampling from restricted Boltzmann machines (RBMs) is done by Markov chain Monte 
Carlo (MCMC) methods. The faster the convergence of the Markov chain, the more 
efficiently can high quality samples be obtained. This is also important for robust training 
of RBMs, which usually relies on sampling. Parallel tempering (PT), an MCMC method 
that maintains several replicas of the original chain at higher temperatures, has been 
successfully applied for RBM training. We present the first analysis of the convergence 
rate of PT for sampling from binary RBMs. The resulting bound on the rate of convergence 
of the PT Markov chain shows an exponential dependency on the size of one layer and the 
absolute values of the RBM parameters. It is minimized by a uniform spacing of the inverse 
temperatures, which is often used in practice. Similarly as in the derivation of bounds on 
the approximation error for contrastive divergence learning, our bound on the mixing time 
implies an upper bound on the error of the gradient approximation when the method is 
used for RBM training.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Restricted Boltzmann machines (RBMs) are probabilistic graphical models corresponding to stochastic neural networks 
[1,2] (see [3] for a recent review). They are applied in many machine learning tasks, notably they serve as building blocks 
of deep belief networks [4]. Markov chain Monte Carlo (MCMC) methods are used to sample from RBMs, and chains that 
quickly converge to their stationary distribution are desirable to efficiently get high quality samples. Adaptation of the RBM 
model parameters typically corresponds to gradient-based likelihood maximization given training data. As computing the 
exact gradient is usually computationally not tractable, sampling-based methods are employed to approximate the likelihood 
gradient. It has been shown that inaccurate approximations can deteriorate the learning process (e.g., [5]), and for the most 
popular learning scheme contrastive divergence learning (CD, [2]) the approximation quality has been analyzed [6,7]. The 
quality of the approximation depends, among other things, on how quickly the Markov chain approaches the stationary 
distribution, that is, on its mixing rate.

To improve RBM learning, parallel tempering (PT, [8]) has successfully been used as a sampling method in RBM training 
[9–11,3]. Parallel tempering introduces supplementary Gibbs chains that sample from smoothed replicas of the original 
distribution—with the goal of improving the mixing rate. However, so far there exist no published attempts to analyze the 
mixing rate of PT applied to RBMs. Based on the work by Woodard et al. [12], we provide the first such analysis. After 
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introducing the basic concepts, Section 3 states our main result. Section 4 summarizes general theorems required for our 
proof in Section 5, which is followed by a discussion and our conclusions.

2. Background

In the following, we will give a brief introduction to RBMs and the relation between the mixing rate and the spectral 
gap of a Markov chain. Afterwards we will describe the parallel tempering algorithm and its application to sampling from 
RBMs.

2.1. Restricted Boltzmann machines

Restricted Boltzmann machines (RBMs) are probabilistic undirected graphical models (Markov random fields). Their struc-
ture is a bipartite graph connecting a set of m visible random variables V = (V 1, V 2, . . . , Vm) modeling observations to n
hidden (latent) random variables H = (H1, H2, . . . , Hn) capturing dependencies between the visible variables. In binary 
RBMs the state space of one single variable is given by � = {0, 1} and accordingly (V , H) ∈ {0, 1}m+n . The joint probability 
distribution of (V , H) is given by the Gibbs distribution

π(v,h) = exp(−E(v,h))

Z
, (1)

with energy

E(v,h) = −
n∑

i=1

m∑
j=1

hi wij v j −
m∑

j=1

b j v j −
n∑

i=1

cihi

and real-valued connection weights wij and bias parameters b j and ci for i ∈ {1, . . . , n} and j ∈ {1, . . . , m}. The normalization 
constant Z , also called the partition function, is given by Z = ∑

v,h exp(−E(v, h)).
Training an RBM means adapting its parameters such that the distribution of V models a distribution underlying some 

observed data. In practice, this training corresponds to performing stochastic gradient ascent on the log-likelihood of the 
weight and bias parameters given sample (training) data. The gradient of the log-likelihood given a single training sample 
vtrain is given by

∂ lnπ(v train | θ)

∂θ
= −

∑
h

π(h | vtrain)
∂ E(v train,h)

∂θ
+

∑
v,h

π(v,h)
∂ E(v,h)

∂θ
, (2)

where θ is the vector collecting all parameters. Since the expectation under the model distribution in the second term 
on the right hand side can not be computed efficiently (it is exponential in min(n, m)), it is approximated by MCMC 
methods in RBM training algorithms. Typically, the expected value under the model distribution is approximated by ∑
h

π(h | v(k))
∂ E(v(k),h)

∂θ given a sample v(k) obtained by running a Markov chain for k steps. Alternatively, we can consider 

∑
v

π(v | h(k))
∂ E(v,h(k))

∂θ given a sample h(k) to save computation time if m < n.

2.2. Mixing rates and the spectral gap

A homogeneous Markov chain on a discrete state space � can be described by a transition matrix P = (px,y)x,y∈� , where 
px,y is the probability to move from x to y in one step of the Markov chain. We also refer to this probability as P (x, y), 
and accordingly Pk(x, y) gives the probability to move from x to y in k steps of the chain.

Markov chain Monte Carlo methods make use of the fact that an ergodic Markov chain on � with transition matrix P
and equilibrium distribution π satisfies P k(x, y) → π(y) as k → ∞ for all x, y ∈ �. It is important to study the convergence 
rate of the Markov chain in order to find out how large k has to be to ensure that P k(x, y) is suitably close to π(y). One 
way to measure the closeness to stationarity is the total variation distance ‖P k(x, ·) − π‖ = 1

2

∑
y |Pk(x, y) − π(y)| for an 

arbitrary starting state x. Reversibility of the chain implies that the eigenvalues of P are real-valued, and we sort them by 
value 1 = λ1 ≥ λ2 ≥ · · · ≥ λr ≥ −1. The value Gap(P ) = 1 − λ2 is called the spectral gap of P , and the eigenvalue with the 
second largest absolute value λSLEM = max{λ2, |λr |} is often referred to as second largest eigenvalue modulus (SLEM).

Many bounds on convergence rates are based on the SLEM. Diaconis and Saloff-Coste [13], for example, prove

‖Pk(x, ·) − π‖ ≤ 1

2
√

π(x)
λSLEM

k . (3)

If P is positive definite all eigenvalues are non-negative. In this case λSLEM = λ2 and we can replace λSLEM in (3) (and 
similar bounds) by 1 − Gap(P ). We can make an arbitrary transition matrix Q positive definite by skipping the move each 
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