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We present three different techniques that use information about symmetries detected in 
the input formula to block the expansion of diamonds in a modal tableau. We show how 
these blocking techniques can be included in a standard tableaux calculus for the basic 
modal logic, and prove that they preserve soundness and completeness. We empirically 
evaluate these blocking mechanisms in different modal benchmarks.
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1. Introduction

In the context of automated reasoning a symmetry can be defined as a permutation of the variables (or literals) of a 
problem that preserves its structure and its set of solutions. Symmetries have been extensively investigated and success-
fully exploited for propositional satisfiability (SAT). Already in [1], Krishnamurthy introduced symmetry inference rules to 
strengthen resolution-based proof systems for propositional logic leading to much shorter proofs of certain difficult prob-
lems (e.g., the pigeonhole problem). Since then, many articles discuss how to detect and exploit symmetries for propositional 
logic. Most of them can be grouped into two different approaches: static symmetry breaking (e.g., [2–4]) and dynamic sym-
metry breaking (e.g., [5,6]). In the former, symmetries are detected and eliminated from the problem statement before a SAT 
solver is used, i.e., they work as a preprocessing step. In the latter, symmetries are detected and broken during the search 
space exploration. Independently of the particular characteristics of each approach, they share the same goal: the goal is to 
identify symmetric branches of the search space and guide the SAT solver away from symmetric branches already explored.

Similar techniques for logics other than propositional logic have been investigated in the last years, e.g. [7,8]. To the 
best of our knowledge, symmetries remain largely unexplored in automated theorem proving for modal logics. In [9], we 
have laid the theoretical foundations to exploit symmetries in a number of modal logics, and developed techniques to 
efficiently detect symmetries in an input formula. In this paper we put these techniques to work and show how to use 
symmetry information in a modal tableaux calculus by presenting novel blocking mechanisms. These techniques, that we 
called symmetric blocking, dynamically delay the application of the rule that expands a yet unexplored diamond formula, if 
the rule has been already applied to a symmetric formula. In the last part of the article, we carry out an empirical evaluation 
of the effectiveness of these blocking mechanisms.
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Outline. Section 2 introduces the required definitions on modal language and symmetries. Section 3 briefly discusses the 
algorithm used to detect symmetries in modal formulas and shows experimental data about the detection construction. 
Section 4 presents a classic labeled tableaux calculus for the basic modal logic and introduces different symmetric block-
ing conditions. We also show that the resulting calculi are terminating, sound and complete. Finally, Section 5 presents 
experimental results about the effects of symmetric blocking in modal benchmarks. Section 6 concludes with some final 
remarks.

2. Basic definitions

In this section we introduce the basic notions concerning modal languages, permutations and symmetries. In what 
follows, we will assume basic knowledge of classical modal logics and refer the reader to [10,11] for technical details.

We will discuss only the mono-modal basic modal logic. The results we establish extend, in an obvious way, to the 
multi-modal case. In Section 6 we discuss other modal logics.

Definition 1 (Syntax). Let PROP = {p1, p2, . . .} be a countably infinite set of propositional variables. The well-formed formulas 
of the basic modal logic are defined by the rule

ϕ,ψ := p | ¬p | ϕ ∨ ψ | ϕ ∧ ψ | ¬�ϕ | �ϕ,

where p ∈ PROP. FORM denotes the set of all well-formed formulas of the basic modal logic. Given a formula ϕ ∈ FORM, 
define PROP(ϕ) as the set of propositional variables occurring in ϕ; for S a set of formulas, let PROP(S) = ⋃

ϕ∈S PROP(ϕ).

Definition 2 (Propositional literals). A propositional literal l is either a propositional variable p ∈ PROP or its negation ¬p. 
The set of propositional literals over PROP is PLIT = PROP ∪ {¬p | p ∈ PROP}. A set of propositional literals L is complete
if for each p ∈ PROP either p ∈ L or ¬p ∈ L. It is consistent if for each p ∈ PROP either p /∈ L or ¬p /∈ L. Any complete 
and consistent set of literals L defines a unique valuation v ⊆ PROP which is defined as p ∈ v if and only if p ∈ L. For 
S ⊆ PROP, the consistent and complete set of literals generated by S (notation: L S ) is S ∪ {¬p | p ∈ PROP\S}.

Definition 3 (Modal literals, clauses and modal CNF). A formula is in modal conjunctive normal form (modal CNF) if it is a 
conjunction of clauses. A clause is a disjunction of propositional and modal literals. A modal literal is a formula of the form �C or ¬�C where C is a clause.

The function clauses returns the multiset of clauses in a formula ϕ . Let � be the operation of union with repetition 
between multisets, we define clauses as follows

clauses(p) = {}
clauses(¬p) = {}
clauses(�C) = clauses(C)

clauses(¬�C) = clauses(C)

clauses(C) = {C} � ⊎
l∈C clauses(l)

clauses(ϕ) = ⊎
C∈ϕ clauses(C).

Example 1. The formula ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) ∧ ¬�(¬q ∨ �p ∨ �¬p) is in modal CNF. It is the conjunction of two 
clauses ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) and ¬�(¬q ∨ �p ∨ �¬p) which are also modal literals (notice that, in this case, each 
clause contains only one disjunct).

Every modal formula can be transformed into an equivalent formula in modal CNF at the risk of an exponential blowup 
in the size of the formula; it can be transformed into an equisatisfiable formula in polynomial time, using additional propo-
sitional variables (see [12] for details).

In what follows, we assume that modal formulas are in modal CNF. Moreover, we want to consider formulas modulo 
commutativity and idempotency of conjunction and disjunction. To that end, we represent a modal CNF formula as a set of 
clauses (interpreted conjunctively), and each clause as a set of propositional and modal literals (interpreted disjunctively). 
This set representation disregards order and multiplicity of clauses and literals in a formula. We will assume that modal 
formulas are represented using set notation, even though we will often write them using the familiar notation.

Example 2. The formula ¬�(¬p ∨ �q ∨ �¬q ∨ ¬p) ∧ ¬�(¬q ∨ �p ∨ �¬p) is written, using the set notation, as 
{¬�{¬p, �{q}, �{¬q}}, ¬�{¬q, �{p}, �{¬p}}}.

Definition 4 (Semantics). A pointed model is a tuple 〈w, W , R, V 〉, where W is a non-empty set, w ∈ W , R ⊆ W × W and 
V (v) ⊆ PROP for all v ∈ W . Let M = 〈w, W , R, V 〉 be a pointed model and w ′ ∈ W , define M, w ′ = 〈w ′, W , R, V 〉.

Let M = 〈w, W , R, V 〉 be a pointed model, we define the satisfiability relation |� for modal CNF formulas, clauses and 
literals as follows. Let ϕ be a modal CNF formula, C a modal clause, and p ∈ PROP, then
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