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The intensional fragment of classical propositional linear logic combines modalities 
with contraction-free relevance logic — adding modalized versions of the thinning and 
contraction rules. This paper provides a proof of the decidability of this logic based on a 
sequent calculus formulation. Some related logics and some other fragments of linear logic 
are also shown decidable.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Linear logic was introduced by Girard [15], and it has been applied, reformulated, extended and thoroughly investigated.1

Theorem 3.7 in Lincoln et al. [24] claims that the propositional fragment is undecidable. However, the undecidability of 
linear logic would not imply the undecidability of its fragments. Indeed, it seems that the decidability of the intensional 
fragment (sometimes termed as MELL) has not been solved.2

Kripke [20] has shown that certain relevance logics are decidable. Detailed presentations of those results may be found in 
Belnap and Wallace [6], Anderson and Belnap [2, §13] and Dunn [13, §§3.6–3.9]. Meyer [27] proved that the non-distributive 
logic of relevant implication is decidable. The result has been further elaborated on in Thistlewaite et al. [35]. Bimbó and 
Dunn [10] extended the scope of decidable fragments to include the implicational logic of ticket entailment, and Bimbó 
[8, Ch. 9] provides proofs of decidability for further logics. This paper shows — using a version of the method exemplified 
by these results — that the intensional fragment of classical propositional linear logic is decidable. The modalization of the 
structural rules is peculiar to linear logic, which adds an extra layer to the decidability proof.

In Section 2, we carefully formulate sequent calculi for CLLint, the intensional fragment of classical linear logic and RLLint, 
intensional interlinear logic. The former is at the center of this paper, however, the latter is used in an essential way in 

E-mail address: bimbo@ualberta.ca.
1 See also Belnap [5], Girard [16] and [17], Gunter and Gehlot [18], Kopylov [19], Lafont [22], Lincoln and Winkler [25], Martini and Masini [26], Meyer 

et al. [31], Nigam and Miller [32], Urquhart [37] and [38].
2 MELL is a label used, for example, in Lincoln [23] and Di Cosmo and Miller [12]. The decidability of MELL is listed as an open problem by Y. Lafont on 

his web pages at the URL iml.univ-mrs.fr/~lafont/linear/decision/bienvenue.html (accessed on March 15th, 2015).
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the decidability proof of CLLint. Section 3 provides proofs — in some detail — of the cut theorem for these calculi. These 
theorems ensure that the sequent calculi are properly formulated, and that cut-free proofs are sufficient. Section 4 contains 
the proof of the decidability of CLLint, with an auxiliary proof of the decidability of RLLint. In Section 5, we prove similar 
results for logics closely related to CLLint and RLLint. In the last section, we provide some concluding remarks about the 
importance of our results.

2. Sequent calculi

We introduce four sequent calculi that formalize two logics, the intensional fragment of linear logic and intensional 
interlinear logic.

2.1. Intensional fragment of classical linear logic: CLLint

The intensional fragment of classical propositional linear logic is denoted by CLLint.3 The language of this logic contains a 
unary connective ⊥ (negation), three binary connectives � (implication), ⊗ (fusion) and ` (fission), and two unary modali-
ties ! (possibility) and ? (necessity).4 The atomic formulas comprise a denumerable set of propositional variables; formulas are 
defined by the following cfg, with the proviso that P is a non-terminal symbol that rewrites to a propositional variable.

A ::= P | (A⊥) | (A�A) | (A⊗A) | (A`A) | !A | ?A

We use A, B, C, . . . as metavariables for formulas. Capital Greek letters stand for multisets of formulas (including the empty 
multiset of formulas).5 The multiset [A1, . . . , An] is denoted by A1; . . . ; An; that is, we omit the brackets and separate 
the elements of the multiset by semicolons. This notation is in harmony with standard notation in sequent calculi for 
non-classical logics. �; � is a shorthand for the union of � and �, and A; � (or �; A) is the union of � and [A] (the 
singleton multiset containing one copy of A). The superscript modalities on multisets in the rules below indicate that in 
order for a rule to be applicable the formulas in the multiset must be appropriately modalized. For instance, �! is a multiset 
of formulas, in which each element C is of the form !A, for some A.

A sequent is a pair of multisets of formulas separated by � . The sequent calculus CLLint comprises the following axiom
and rules. The last four rules are modalized structural rules. The rest of the rules are connective rules.

A � A id

� � �;A
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� � �;A` B
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A;� � �

!A;� � �
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�! � �?; !A �!

A;�! � �?

?A;�! � �?
? � � � �;A

� � �;?A
�?

� � �

!A;� � �
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� � �;?A
�?K

!A; !A;� � �

!A;� � �
!W � � � �;?A;?A

� � �;?A
�?W

The notion of a proof is usual; that is, a proof is a tree of occurrences of sequents where the leaves are instances of the 
axiom, and parent nodes are obtained by an application of a rule to their children. The term “tree” in this paper means a 

3 “Intensional” is used in accordance with the use of this term in Bimbó and Dunn [9]. CLLint is or is very closely related to MELL — depending on what 
exactly is meant by that acronym.

4 As a compromise between the unconventional notation of Girard [15] and the standard terminology in non-classical logics, I use Girard’s symbols 
with the customary names of the connectives. A translation may be found in Avron [3], though the modalities here are switched for semantic reasons as 
explained in Bimbó and Dunn [9, Ch. 3].

5 By “multiset” we always mean a finite multiset; hence, we drop “finite.” Many logics can be formulated as sequent calculi based on multisets — see 
e.g., Meyer and McRobbie [29] and [30] for related logics.
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