Theoretical Computer Science 597 (2015) 1-17

Contents lists available at ScienceDirect & o

Theoretical Computer Science

www.elsevier.com/locate/tcs e

The decidability of the intensional fragment of classical linear @Cmsmrk
logic

Katalin Bimbo

2-40 Assiniboia Hall, Department of Philosophy, University of Alberta, Elmonton, AB T6G 2E7, Canada

ARTICLE INFO ABSTRACT
Article history: The intensional fragment of classical propositional linear logic combines modalities
Received 14 July 2014 with contraction-free relevance logic — adding modalized versions of the thinning and

Received in revised form 23 March 2015
Accepted 5 June 2015

Available online 16 June 2015
Communicated by A. Avron

contraction rules. This paper provides a proof of the decidability of this logic based on a
sequent calculus formulation. Some related logics and some other fragments of linear logic
are also shown decidable.

© 2015 Elsevier B.V. All rights reserved.

Keywords:
Cognate sequent
Curry’s lemma
Decidability
Ko6nig’s lemma
Kripke’s lemma
Linear logic
Modal logic
Relevance logic
Sequent calculus

1. Introduction

Linear logic was introduced by Girard [15], and it has been applied, reformulated, extended and thoroughly investigated.'
Theorem 3.7 in Lincoln et al. [24] claims that the propositional fragment is undecidable. However, the undecidability of
linear logic would not imply the undecidability of its fragments. Indeed, it seems that the decidability of the intensional
fragment (sometimes termed as MELL) has not been solved.?

Kripke [20] has shown that certain relevance logics are decidable. Detailed presentations of those results may be found in
Belnap and Wallace [6], Anderson and Belnap [2, §13] and Dunn [13, §§3.6-3.9]. Meyer [27] proved that the non-distributive
logic of relevant implication is decidable. The result has been further elaborated on in Thistlewaite et al. [35]. Bimb6 and
Dunn [10] extended the scope of decidable fragments to include the implicational logic of ticket entailment, and Bimbé
[8, Ch. 9] provides proofs of decidability for further logics. This paper shows — using a version of the method exemplified
by these results — that the intensional fragment of classical propositional linear logic is decidable. The modalization of the
structural rules is peculiar to linear logic, which adds an extra layer to the decidability proof.

In Section 2, we carefully formulate sequent calculi for CLL;y, the intensional fragment of classical linear logic and RLLjy,
intensional interlinear logic. The former is at the center of this paper, however, the latter is used in an essential way in

E-mail address: bimbo@ualberta.ca.
1 See also Belnap [5], Girard [16] and [17], Gunter and Gehlot [18], Kopylov [19], Lafont [22], Lincoln and Winkler [25], Martini and Masini [26], Meyer
et al. [31], Nigam and Miller [32], Urquhart [37] and [38].
2 MELL is a label used, for example, in Lincoln [23] and Di Cosmo and Miller [12]. The decidability of MELL is listed as an open problem by Y. Lafont on
his web pages at the URL iml.univ-mrs.fr/~lafont/linear/decision/bienvenue.html (accessed on March 15th, 2015).
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the decidability proof of CLLjy. Section 3 provides proofs — in some detail — of the cut theorem for these calculi. These
theorems ensure that the sequent calculi are properly formulated, and that cut-free proofs are sufficient. Section 4 contains
the proof of the decidability of CLLj;, with an auxiliary proof of the decidability of RLLjy. In Section 5, we prove similar
results for logics closely related to CLLiy¢ and RLLiy. In the last section, we provide some concluding remarks about the
importance of our results.

2. Sequent calculi

We introduce four sequent calculi that formalize two logics, the intensional fragment of linear logic and intensional
interlinear logic.

2.1. Intensional fragment of classical linear logic: CLLin¢

The intensional fragment of classical propositional linear logic is denoted by CLL;,..> The language of this logic contains a
unary connective - (negation), three binary connectives —o (implication), ® (fusion) and % (fission), and two unary modali-
ties ! (possibility) and ? (necessity).* The atomic formulas comprise a denumerable set of propositional variables; formulas are
defined by the following cFG, with the proviso that P is a non-terminal symbol that rewrites to a propositional variable.

A=P| AN (Ao A (ARA) | (ABA)|IA|?2A

We use A, B,C, ... as metavariables for formulas. Capital Greek letters stand for multisets of formulas (including the empty
multiset of formulas).” The multiset [ A1, ..., A,] is denoted by A;;...; As; that is, we omit the brackets and separate
the elements of the multiset by semicolons. This notation is in harmony with standard notation in sequent calculi for
non-classical logics. I'; A is a shorthand for the union of I and A, and A; T (or I'; A) is the union of ' and [A] (the
singleton multiset containing one copy of .A). The superscript modalities on multisets in the rules below indicate that in
order for a rule to be applicable the formulas in the multiset must be appropriately modalized. For instance, I'' is a multiset
of formulas, in which each element C is of the form !4, for some A.

A sequent is a pair of multisets of formulas separated by F. The sequent calculus CLL;j,; comprises the following axiom
and rules. The last four rules are modalized structural rules. The rest of the rules are connective rules.
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The notion of a proof is usual; that is, a proof is a tree of occurrences of sequents where the leaves are instances of the
axiom, and parent nodes are obtained by an application of a rule to their children. The term “tree” in this paper means a

3 “Intensional” is used in accordance with the use of this term in Bimbé and Dunn [9]. CLL;y is or is very closely related to MELL — depending on what

exactly is meant by that acronym.

4 As a compromise between the unconventional notation of Girard [15] and the standard terminology in non-classical logics, 1 use Girard’s symbols
with the customary names of the connectives. A translation may be found in Avron [3], though the modalities here are switched for semantic reasons as
explained in Bimbé and Dunn [9, Ch. 3].

5 By “multiset” we always mean a finite multiset; hence, we drop “finite.” Many logics can be formulated as sequent calculi based on multisets — see
e.g., Meyer and McRobbie [29] and [30] for related logics.
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