
Theoretical Computer Science 595 (2015) 46–64

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Online dynamic power management with hard real-time 

guarantees ✩

Jian-Jia Chen a, Mong-Jen Kao b,∗, D.T. Lee b,1, Ignaz Rutter a, Dorothea Wagner a

a Faculty for Informatics, Karlsruhe Institute of Technology (KIT), Germany
b Institute for Information Science, Academia Sinica, Taipei, Taiwan

a r t i c l e i n f o a b s t r a c t

Article history:
Received 12 April 2015
Received in revised form 1 June 2015
Accepted 4 June 2015
Available online 10 June 2015
Communicated by A. Marchetti-Spaccamela

Keywords:
Online energy-efficient scheduling
Dynamic power management

We consider the problem of online dynamic power management that provides hard real-
time guarantees for multi-processor systems. In this problem, a set of jobs, each associated 
with an arrival time, a deadline, and an execution time, arrives to the system in an online 
fashion. The objective is to compute a non-migrative preemptive schedule of the jobs and 
a sequence of power on/off operations of the processors so as to minimize the total energy 
consumption while ensuring that all the deadlines of the jobs are met. We assume that we 
can use as many processors as necessary. In this paper we examine the complexity of this 
problem and provide online strategies that lead to practical energy-efficient solutions for 
real-time multi-processor systems.
First, we consider the case for which we know in advance that the set of jobs can be 
scheduled feasibly on a single processor. We show that, even in this case, the competitive 
ratio of any online algorithm is at least 2.06. On the other hand, we give a 4-competitive 
online algorithm that uses at most two processors. For jobs with unit execution times, the 
competitive ratio of this algorithm improves to 3.59.
Second, we relax our assumption by considering as input multiple streams of jobs, each of 
which can be scheduled feasibly on a single processor. We present a trade-off between 
the energy-efficiency of the schedule and the number of processors to be used. More 
specifically, for k given job streams and h processors with h > k, we give a scheduling 
strategy such that the energy usage is at most 4 ·

⌈
k

h−k

⌉
times that used by any schedule 

which schedules each of the k streams on a separate processor. Finally, we drop the 
assumptions on the input set of jobs. We show that the competitive ratio of any online 
algorithm is at least 2.28, even for the case of unit job execution times for which we 
further derive an O (1)-competitive algorithm.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Reducing power consumption and improving energy efficiency have become important design requirements in computing 
systems. For mobile devices, effective power management can considerably extend the standby period and prolong battery 

✩ An extended abstract of this work appeared in the 31st Symposium on Theoretical Aspects of Computer Science, STACS’14, Lyon, France.

* Corresponding author.
E-mail addresses: j.chen@kit.edu (J.-J. Chen), mong@iis.sinica.edu.tw (M.-J. Kao), dtlee@ieee.org (D.T. Lee), rutter@kit.edu (I. Rutter), 

dorothea.wagner@kit.edu (D. Wagner).
1 Also with the Department of Computer Science and Information Engineering, National Chung-Hsing University, Tai-Chung, Taiwan.

http://dx.doi.org/10.1016/j.tcs.2015.06.014
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.06.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:j.chen@kit.edu
mailto:mong@iis.sinica.edu.tw
mailto:dtlee@ieee.org
mailto:rutter@kit.edu
mailto:dorothea.wagner@kit.edu
http://dx.doi.org/10.1016/j.tcs.2015.06.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.06.014&domain=pdf


J.-J. Chen et al. / Theoretical Computer Science 595 (2015) 46–64 47

lifetime. For large-scale computing clusters, appropriately powering down the idling processing units can considerably re-
duce the electricity bill.

In order to increase the energy efficiency, two different mechanisms have been introduced to reduce the energy con-
sumption. (1) Power-down Mechanism: When a processor is idling, it can be put into a low-power state, e.g., sleep or 
power-off. While the processor consumes less power in these states, a fixed amount of energy is required to switch the 
system back to work. In the literature, the problem of deciding the sequence of state transitions is referred to as dynamic 
power management (DPM). (2) Dynamic Speed Scaling: The concept of dynamic speed scaling refers to the flexibility provided 
by a processor to adjust its processing speed dynamically. The rate of energy consumption is typically described by a con-
vex function of the processing speed. This feature is also referred to as dynamic voltage frequency scaling (DVFS), following its 
practical implementation scheme.

The majority of previous work regarding energy-efficient scheduling focuses mainly on uni-processor systems. For sys-
tems that support a power-down mechanism, Baptiste [7] considered hard real-time jobs, i.e., deadline misses of jobs are 
not allowed, with unit execution times and proposed the first polynomial-time algorithm that computes an optimal strategy 
for turning on and powering off a processor. In a follow-up paper, Baptiste et al. [8] further extended the result to jobs 
with arbitrary execution times and reduced the time complexity. When considering workload-conserving scheduling, i.e., 
the system is not allowed to enter low-power states when the ready queue is not empty, Augustine et al. [5] considered 
systems with multiple low-power states and provided online algorithms.

Dynamic speed scaling was introduced to allow computing systems to reach a balance between high performance and 
low power consumption dynamically. Hence, scheduling algorithms that assume dynamic speed scaling, e.g., Yao et al. [32], 
usually execute jobs as slowly as possible while ensuring that timing constraints are met. When the energy required to 
keep the processor active is not negligible, however, executing jobs too slowly may result in more energy consumption. For 
most of the realistic power-consumption functions, there exists a critical speed, which is the most energy-efficient for job 
execution [14,24].

Irani et al. [24] initiated the study of combining both mechanisms. For offline energy-minimization, they presented a 
2-approximation. For the online version, they introduced a greedy procrastinating principle, which enables online algorithms 
that have certain properties and that are designed for speed scaling without power-down mechanism to additionally support 
the power-down mechanism. The idea behind this principle is to postpone job execution as much as possible in order to 
bundle workload for batch execution. The usage of job procrastination with dynamic speed scaling for periodic tasks has 
later been explored extensively in a series of studies [13,28,14].

The combination of the power-down mechanism with dynamic speed scaling suggests the philosophy of racing-to-idle: 
Execute jobs at higher speeds and gain longer quality sleeping intervals. Albers and Antoniadis [1] showed that the problem 
of minimizing the energy consumption for speed scaling with a sleep state is NP-hard and provided a 4

3 -approximation. 
Recently, this result was further improved by Antoniadis et al. [4] to a fully-polynomial time approximation scheme.

All of the aforementioned work mainly focuses on uni-processor systems. By contrast, for multi-processor systems, rela-
tively fewer results are known. Demaine et al. [19] considered unit jobs and presented a polynomial-time algorithm based on 
dynamic programming for power-down mechanism. Approximations for several variations were also presented. In a follow-
up paper, Demaine and Zadimoghaddam [20] presented logarithmic approximations for general formulations of scheduling 
problems with submodular objective functions, including energy consumption. Albers et al. [2] considered dynamic speed 
scaling with job migration and presented polynomial-time algorithms based on maximum flow problems.

As scheduling to meet deadline constraints is a long-standing difficult problem [17,16,18,22], additional augmentations 
on the hardware level, e.g., speed of the processors or number of the machines, have been considered to provide practical 
solutions. See, for example, [12,10,3,30]. In practice, machine augmentation follows the trends in multi-core systems, while 
speed augmentation has been shown its limits as overclocking is difficult to achieve due to the dramatic increase of power 
consumption and thermal dissipation.

Our focus and contribution. In this paper, we examine the problem of online dynamic power management that provides 
hard real-time guarantees, i.e., each job must finish its execution before its deadline, for multi-processor systems. We assume 
a system equipped with multiple processors that are identical and that operate independently from each other, and we can 
use as many processors as necessary. We assume that job executions can be preempted but cannot be migrated since job 
migration is often unaffordable in real-time system. That is, the execution of a job must be done on the same processor. The 
objective is to compute a schedule of the jobs and a sequence of switch on/off operations of the processors so as to minimize 
the total energy consumption. For this problem model we give an elaborate study that leads to practical energy-efficient 
solutions for real-time multi-processor systems.

First, we consider the case for which we know in advance that the set of jobs can be scheduled feasibly on one processor. 
We show that the competitive ratio of any online algorithm is at least 2.06, even for this restricted case. Then we propose 
the idea of energy-efficient anchors, which are defined for each of the jobs, to indicate a proper moment for which the 
online scheduler should no longer postpone the execution of the jobs. We show that this idea leads to a 4-competitive 
online algorithm which uses at most two processors. For jobs with unit execution times, we show that the competitive ratio 
improves to 3.59.

Second, we relax the conditions of our assumption by considering as input multiple streams of jobs, each of which can 
be scheduled feasibly on one processor. We present a simple strategy, as a byproduct of our first algorithm, to allow a 



Download	English	Version:

https://daneshyari.com/en/article/435847

Download	Persian	Version:

https://daneshyari.com/article/435847

Daneshyari.com

https://daneshyari.com/en/article/435847
https://daneshyari.com/article/435847
https://daneshyari.com/

