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We study the Stackelberg/bilevel knapsack problem as proposed by Chen and Zhang [1]: 
Consider two agents, a leader and a follower. Each has his own knapsack. (Knapsack 
capacities are possibly different.) As usual, there is a set of items i = 1, . . . , n of given 
weights wi and profits pi . It is allowed to pack item i into both knapsacks, but in this case 
the corresponding profit for each player becomes pi + ai , where ai is a given (positive or 
negative) number. The objective is to find a packing for the leader such that the total profit 
of the two knapsacks is maximized, assuming that the follower acts selfishly. We present 
tight approximation algorithms for all settings considered in [1].

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The standard knapsack problem is one of the most fundamental and well-studied problems in combinatorial optimiza-
tion: There is a knapsack of prescribed capacity W and n items with given size wi and profit pi . The task is to select a 
set of items of total size at most W and maximum total profit. A first bilevel variant (in the form of a Stackelberg game) 
was introduced by Dempe and Richter [2]: There are two decision makers (players) – a leader and a follower – as well as a 
(universal) knapsack with flexible capacity and a set of items with given sizes as above, yet item profits may vary w.r.t. the 
leader and the follower, respectively. The leader first determines the capacity of the knapsack, and afterwards the follower, 
assumed to be selfish, packs items to the knapsack, maximizing his own profit. The (leader’s bilevel) problem is to compute 
the knapsack capacity such that the leader’s profit – defined by a linear function of the knapsack capacity plus his total 
profit of packed items – is maximized.

Several other bilevel variants of knapsack have been proposed as well. For example, Mansi et al. [12] study a setting in 
which both the leader and the follower pack items into a knapsack (of fixed capacity). DeNegre [17] investigates a bilevel 
version where both players own a private knapsack each and pack items from a common item set. Again, the leader acts 
first, selecting a set of items for his own knapsack, then the follower packs items from the remaining item set into his own 
knapsack, seeking to maximize his total profit. The objective of the (hostile) leader is to choose his set of items such that 
the follower’s profit is minimized.
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Fig. 1. Known lower bounds.

In this paper we consider yet another variant of the bilevel knapsack problem, due to Chen and Zhang [1]. In this setting, 
again, each player has his own knapsack of fixed capacities W1 and W2, respectively. Items 1, . . . , n have fixed weights wi

and profits pi . The characteristic feature of the model in [1] is that items may be double-packed, i.e. packed by both players. 
In case item i is packed only by one player, it accounts for a profit of pi , as usual, however, if i is packed by both players, 
its profit (for both players) is modified to pi + ai for given profit modifier ai ∈ R. Again, the setting is that of a Stackelberg 
game, and the objective is to exhibit an optimal packing for the leader, i.e., one that maximizes the total profit assuming 
that the second player (the follower) acts selfishly (disregarding the impact any double packing may have on the items 
packed by the leader). As a motivating example, Chen and Zhang mention the case of two investors, say, the government 
and a company with budgets W1 and W2, respectively. Items correspond to potential projects of cost wi and reward pi , 
resp. pi + ai with ai > 0 if both players invest in project i. Depending on the application, the numbers ai may be positive 
or negative (“double booking”). In case all ai are positive, Chen and Zhang [1] call it the beneficial model and if all ai are 
negative, it is referred to as the competitive model.

Bilevel optimization is often computationally difficult and likely to extend beyond NP. In the last decades, bilevel and 
multilevel optimization have received much attention in the literature (cf. books by Migdalas, Pardalos and Värbrand [4]
and Dempe [3], a survey by Colson et al. [5]). Dempe and Richter [2] introduced a mixed integer bilevel program for their 
problem variant and proposed an algorithm based on branch and bound. Afterwards, a dynamic programming algorithm 
for this problem was given by Brotcorne et al. [6]. Recently, Caprara et al. [7] proved that the first three problem variants 
mentioned above are � P

2 -hard (probably the fourth one is as well), i.e., there is no way of formulating them as single-level 
integer programs of polynomial size unless the polynomial hierarchy collapses (cf. [7] for more details). In particular, they 
showed that the first two variants (cf. Dempe and Richter [2], Mansi et al. [12]) do not possess a polynomial approximation 
algorithm with finite worst case guarantee unless P = NP and proposed a polynomial time approximation scheme for the 
third variant (cf. DeNegre [17]), which is known as the first approximation scheme for a � P

2 -hard problem. For other variants 
and related problems, cf. [8–12].

Regarding the problem to be considered in this paper, Chen and Zhang [1] proposed a (2 + ε)-approximation algo-
rithm for the competitive model (ai ≤ 0), and, for the beneficial model (ai ≥ 0), a (1 + √

2 + ε)-approximation for the case 
W1 > W2 and a (2 + ε)-approximation for the case W1 ≤ W2.

In this paper, we present better approximation algorithms for the beneficial model as well as the competitive model 
and show that the approximation ratios are tight in each case, i.e., the approximation ratios can be made arbitrarily close 
to the known lower bounds (cf. Fig. 1). The main ingredients of our approach are: An ε-approximation of the maximum 
profit problem in case both players cooperate – which may be of independent interest, cf. (P3) in Section 2 – and a factor 
revealing LP for estimating the quality of our approximation algorithms (cf. Jain et al. [18]).

The rest of the paper is organized as follows: In the section below, we formally introduce the bilevel problem (cf. (P1)
in Section 2) and its “cooperative” counterpart (cf. (P3)). In Section 3, we describe a polynomial time approximation scheme 
(PTAS) for the cooperative problem version (P3). In Section 4, we present new approximation algorithms and analyze their 
approximation ratios. Finally, in Section 5, we mention some open problems.

2. Bilevel knapsack with independent knapsacks

Let W1, W2 be capacities of the knapsacks owned by player 1 (leader) and player 2 (follower), respectively. Let A =
{1,2, . . . ,n} be a set of items of weight wi , profit pi and “double packing modifier” ai for all i ∈ A. Let xi, yi ∈ {0,1}
indicate whether item i is packed by player 1 and player 2, respectively.

Recall that the profit of item i is modified to pi + ai if i is packed by both players. Thus the leader’s problem can be 
formulated as a bilevel integer program as follows:

max
x

n∑
i=1

pi(xi + yi) + 2
n∑

i=1

ai xi yi (P1)

s.t.
n∑

i=1

wi xi ≤ W1,

xi ∈ {0,1} , i = 1,2, . . . ,n,

y is an optimal solution of (P2) below.
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