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We show that solving (bounded-degree) jigsaw puzzles requires �(n2) edge matching 
comparisons both in the worst case and in expectation, making all jigsaw puzzles as hard 
to solve as the trivial upper bound. This result applies to bounded-degree puzzles of all 
shapes, whether pictorial or apictorial. For non-bounded degree puzzles, we show that 
�(n logn) is a tight bound.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Jigsaw puzzles [25] are among the most popular forms of puzzles. Fig. 1 gives a few examples of their variations. 
A canonical jigsaw puzzle [33] is one where the pieces are square-like and are joined together in a grid-like fashion via 
tabs and pockets along their edges. These tabs and pockets can be of arbitrary shape. Fig. 1(a) demonstrates a canonical 
puzzle. It differs from standard jigsaw puzzles only in that it is apictorial [8], meaning that it has no guiding image. Fig. 1(b) 
also demonstrates an apictorial jigsaw puzzle, however, unlike the first puzzle, it is not canonical: the pieces fit together 
in a scheme different to the canonical grid scheme. Fig. 1(c) demonstrates that puzzle schemes need not even be planar. It 
depicts a partially-assembled 27-tile puzzle that can be assembled into a 3 × 3 × 3 cube.

The study of jigsaw puzzles in computer science began with [8], where the problem was investigated in terms of whether 
machine vision techniques are able to determine if two edges match. This problem was considered to have uses, e.g., in 
piecing together archaeological artefacts, and, indeed, has since been put to such use (see, e.g., [18]). Later improvements 
concentrated on better edge-shape representations (e.g., [21,26,31]), use of pictorial data (e.g., [33]), better match quality 
metrics (e.g., [9,27,32]), etc.

These papers all address the first of three sub-problems, which are normally tackled jointly, which form jigsaw puzzle 
solving. We refer to it as the “tile matching” problem. Suppose now that we take this problem as solved, that is to say, 
that we are given a constant-time Oracle function that is able to provide a precise Boolean answer regarding whether 
two tiles match. Then, we are faced with the second question of which tile pairs to run this Oracle function on. We call 
this the problem of “parsimonious testing”. Lastly, taking this second problem as solved (e.g., by supposing that one has 
already applied the Oracle function to every possible pair), one is faced with the problem of finding a mapping that would 
match the tile pairing data with the puzzle shape. This is the “bijection reconstruction” problem. It is an instance of the 
well-studied problem of graph isomorphism (see, e.g., [1,2,20,24]), or, in some contexts, an instance of the well-studied 
problem of subgraph isomorphism (see, e.g., [4,10,14,29]).
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Fig. 1. Apictorial jigsaw puzzle variations: (a) a canonical puzzle, (b) a non-canonical puzzle, (c) a partially-assembled non-planar puzzle.

In contrast to its popular siblings, the second of the three sub-problems introduced, the problem of parsimonious testing, 
has not received much attention in the literature. In practice, however, it appears to be quite important: the solutions 
proposed to tile matching demonstrate that the more one improves one’s method for tile-match assessment, the more 
time-consuming it becomes. There is, therefore, an incentive to minimise the number of tile comparisons, or otherwise to 
exploit trade-offs between tile-match accuracy and the number of tile pairs that need to be tested.

This paper closes this gap in the literature by focusing on the problem of parsimonious testing. To be able to study it 
in isolation from the two problems flanking it, we consider the following model, which describes the issue as a problem 
in communication [22]. In this model, two entities, I and O , are tasked with solving a puzzle. Entity I is an infinitely 
powerful computer, able to solve, for example, subgraph isomorphism and related problems in constant time, but it does 
not have any information regarding tile shapes and colours. Entity O , on the other hand, has perfect information regarding 
the puzzle, including which tiles match and how. For the puzzle to be considered solved, however, the solution must be 
communicated from O to I . The puzzle is solved by entity I making Oracle calls to entity O , in which I queries O using a 
fixed communication protocol. The question is how many queries does I require in order to solve the puzzle. We call this 
the communication complexity of jigsaw puzzles.

The remainder of this paper is arranged as follows. In Section 2, we give a formal definition of the model. In Section 3
we then prove the claim that bounded-degree jigsaw puzzles, regardless of their shape, are always as hard as the trivial 
upper bound (up to a multiplicative constant). In Section 4 we prove related results regarding other variations of the jigsaw 
puzzle problem. A short conclusions section follows.

2. Formal definition of the model

We use the following model to describe a jigsaw puzzle.

Definition 1. A jigsaw puzzle is a tuple 〈T , P , E p, Q 〉.

Here, T is the set of tiles and P is the set of positions to place them in. We refer to n def= |T | = |P | as the size of the 
puzzle, and assume n > 1.

E p is a relation over P that describes which positions are adjacent. We refer to the (undirected) graph 〈P , E p〉 as the 
shape of the puzzle. Our only requirement from this graph is that it is connected. We refer to its maximum vertex degree 
as the degree of the puzzle.

The last element in the tuple defining a jigsaw puzzle, Q , is a set of queries. These can be of either of two types, as 
follows.

Match queries: Does tile x ∈ T fit to tile y ∈ T ? This query corresponds to a test whether the tabs and pockets of two tiles 
match.

Positional queries: Does tile x ∈ T fit to position p ∈ P ? This query corresponds to a test whether the image portion on 
tile x matches the portion of the guiding image covered by position p.

Definition 2. A jigsaw puzzle is called pictorial if Q is the set of all possible queries. It is called apictorial if Q is the set of 
all possible match queries.

Definition 3. A solution to a jigsaw puzzle 〈T , P , E p, Q 〉 is a bijection, π , from T to P .
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