

Phosphorus limitation increases attachment in *Agrobacterium tumefaciens* and reveals a conditional functional redundancy in adhesin biosynthesis

Jing Xu, Jinwoo Kim¹, Thomas Danhorn², Peter M. Merritt, Clay Fuqua*

Department of Biology, Indiana University, Bloomington, IN 47405, USA

Received 20 August 2012; accepted 12 October 2012 Available online 24 October 2012

Abstract

Bacterial responses to phosphorus limitation, commonly inorganic phosphate (P_i), are important survival mechanisms in a variety of environments. The two-component sensor kinase PhoR and its cognate response regulator PhoB are central to the P_i limitation response of many bacteria and control the large Pho regulon. Limitation for P_i significantly increased attachment and biofilm formation by the plant pathogen *Agrobacterium tumefaciens*, and this was driven by PhoB. Surprisingly, it was also found that both *phoR* and *phoB* were essential in *A. tumefaciens*. Expression of a plasmid-borne copy of the low affinity P_i transporter (*pit*) from *Sinorhizobium meliloti* in *A. tumefaciens* abolished the *phoB* and *phoR* essentiality in *A. tumefaciens* and allowed direct demonstration of the requirement for this regulatory system in the biofilm response. Increased attachment under P_i limitation required a unipolar polysaccharide (UPP) adhesin. Mutation of a polyisoprenylphosphate hexose-1-phosphate transferase (PHPT) called *uppE* abolished UPP production and prevented surface attachment under P_i -replete conditions, but this was rescued under P_i limitation, and this rescue required *phoB*. In low P_i conditions, either *uppE* or a paralogous gene Atu0102 is functionally redundant, but only *uppE* functions in UPP synthesis and attachment when P_i is replete. This conditional functional redundancy illustrates the influence of phosphorus availability on *A. tumefaciens* surface colonization.

Keywords: Biofilm; Phosphate limitation; PhoR-PhoB; Adhesin

1. Introduction

The element phosphorus is an important compound for all life forms and is often a limiting nutrient in natural environments, usually in the form of inorganic phosphate (P_i). Bacteria have evolved a wide range of mechanisms by which they can adapt to P_i limitation, including enhanced uptake of phosphorus-containing compounds from the environment, release of phosphatase enzymes that can release P_i from

macromolecules and activation of phosphorus-sparing systems (Benning et al., 1995; Wanner, 1993). The response to limiting phosphate has been well studied in several model bacterial systems. In Escherichia coli, a very large regulon of genes is controlled in response to P_i limitation by the PhoR-PhoB two-component system (Hsieh and Wanner, 2010; Van Bogelen et al., 1996). For this regulatory system, PhoR is kept inactive in conditions with replete P_i. If the levels of P_i are diminished, PhoR senses this change (directly, or indirectly through interaction with the PstSCAB phosphate transporter in the PhoU coupling protein) and its histidine kinase activity is stimulated. Phospho-PhoR donates phosphate to the PhoB response regulator, which is a transcription factor that controls many of the genes influenced by the P_i limitation response. PhoR and PhoB are well conserved and have been studied in many different proteobacteria.

The phosphate limitation response has also been examined in plant-associated members of the Rhizobiaceae, most

^{*} Corresponding author.

E-mail addresses: xu20@indiana.edu (J. Xu), jinwoo@gnu.ac.kr (J. Kim), tdanhorn@indiana.edu (T. Danhorn), pmerritt@indiana.edu (P.M. Merritt), cfuqua@indiana.edu (C. Fuqua).

¹ Present address: Department of Applied Biology and Institute of Agriculture and Life Sciences, Gyeongsang National University, Jinju, Korea.

² Present address: Center for Genes Environment and Health, National Jewish Health, 1400 Jackson St, Denver, CO 80206, USA.

extensively in Sinorhizobium meliloti, and also relies upon homologs of PhoR and PhoB (McDermott, 2000). The uptake of phosphorus from the environment in S. meliloti can be mediated by at least three different major pathways: (i) Pit low affinity P_i permease; (ii) high affinity ABC-type P_i transporter PstSCAB; and (iii) the similar high affinity PhoCDET ABC transporter, that likely preferentially transports phosphonates, but will also transport P_i (Voegele et al., 1997; Yuan et al., 2006a). In S. meliloti, phospho-PhoB has been shown to activate *pstSCAB* and *phoCDET* expression and to repress *pit* expression under P_i limitation (Yuan et al., 2006a). Conversely, when P_i is replete, expression of neither *pstSCAB* nor *phoCDET* is activated and *pit* expression is derepressed. This regulatory pattern makes sense, as Pit does not require ATP to drive P_i transport when it is abundant, but when conditions are limiting, the cell utilizes energy to scavenge P_i and similar phosphoruscontaining compounds from the environment.

In previous studies of the plant pathogen Agrobacterium tumefaciens, a member of the Rhizobiaceae related to S. meliloti, we had found that the P_i limitation response stimulated both adherence to surfaces and biofilm formation (Danhorn et al., 2004). A. tumefaciens is a plant pathogen that causes crown gall and is well known for its ability to transfer DNA into plant cells (Tzfira and Citovsky, 2008). To determine whether A. tumefaciens PhoR-PhoB orthologues were required for enhancement of biofilm formation at low P_i, we had attempted to create independent null mutations in phoR and phoB, but found that neither gene could be disrupted (Danhorn et al., 2004). Provision of plasmid-borne copies of either phoR or phoB allowed disruption of the corresponding genomic copy, suggesting that these genes were essential in A. tumefaciens. This was surprising, as these regulators have been disrupted in many other bacteria, and although the mutations typically debilitate the P_i-limitation response, the genes are clearly non-essential in other species. Using a controlled expression system, we were able to demonstrate the elevation of biofilm formation in static conditions by high-level expression of phoB even under P_i replete conditions, suggesting that the enhanced biofilm levels were a component of the P_i limitation response.

In this study, we report that expression of the *S. meliloti pit* gene from a plasmid suppresses the observed essentiality of *phoR* and *phoB* in *A. tumefaciens*. Using this information, the requirement of this regulatory system for enhanced biofilm formation is directly tested. Stimulation of attachment under P_i limitation requires a recently discovered polar adhesin called the unipolar polysaccharide (UPP), and mutants which cannot synthesize the UPP do not attach. However, we report that the effect of a presumptive UPP synthesis gene is ameliorated under P_i limitation, and that this is due to a functional redundancy in *A. tumefaciens* that is only effective at low P_i .

2. Materials and methods

2.1. Strains, plasmids, reagents and growth conditions

All of the strains and plasmids used in this study are described in Table 1. Buffers, antibiotics and microbiological media were

Table 1			
Ctucino	and	m 1a	

Strains and plasm	nids.	
Strain/plasmid	Relevant features	Reference
E. coli		
DH5α/λpir	λpir ; cloning strain	(Chiang and
		Rubin, 2002)
TOP10 F'	Cloning strain	Invitrogen
S17-1/λpir	λpir ; Tra ⁺ , cloning host	(Kalogeraki and
-		Winans, 1997)
SY327/λpir	λpir ; cloning host	(Miller and
	r, , , , , , , , , , , , , , , , , , ,	Mekalanos, 1988)
A. tumefaciens ^a		
C58	Nopaline type strain; pTiC58;	(Watson et al., 1975)
0.50	pAtC58	(Watson et al., 1975)
JX100	*	This study
	$\Delta crdS (\Delta Atu3055-3057)$	This study
JX101	$\Delta chvAB$ ($\Delta Atu2728-2730$)	This study
JX102	Δcel cluster ($\Delta Atu3302-8187$)	This study
PMM26	Δupp cluster ($\Delta Atu1235-1240$)	Merritt et al.
		in preparation
MLL2	$\Delta exoA$ (Δ Atu4053)	(Tomlinson
		et al., 2010)
JX103	$\Delta crdS\Delta exoA$	This study
JX108	$\Delta crdS\Delta cel\Delta exoA$	This study
JX110	$\Delta crdS\Delta cel\Delta exoA\Delta chvAB$,	This study
JW6	<i>phoR</i> ::Ω-Km, carrying	This study
3110	pPM194 (P_{lac} -pit _{Sm})	This study
PMM34		This study
PIVIIVI34	$\Delta uppE$ carrying pPM194,	This study
	with <i>phoB</i> ::	
	pTD105	
PMM13	$\Delta uppE$	Merritt et al.
		in preparation
JX112	Δ Atu0102	This study
JX113	$\Delta uppE \Delta Atu0102$	This study
JX114	$\Delta uppE \Delta Atu3327$	This study
TD5	NTL4 derivative;	(Danhorn
	pTi ⁻ phoB::pTD105,	et al., 2004)
	P_{tral} -phoB	
Plasmids		
pGEM-T easy	PCR cloning vector: Ap ^R	Promega
pNPTS138	ColE1 suicide plasmid,	(Hibbing and
pi ti 15156	sacB, Km ^R	
WNIC 101		Fuqua, 2011)
pKNG101	R6K <i>ori</i> ; Suc ^s Sm ^R	(Kaniga et al., 1991)
pHP45 ΩKm	Ω -Km ^R cassette	(Fellay et al., 1984)
pTD114	pBBR1MCS-5 derivative,	(Danhorn et al., 2004)
	Gm^R ; P_{lac} ::traR,	
	P _{tral}	
pTD115	pTD114 carrying phoB	(Danhorn
		et al., 2004)
pVIK112	R6K ori; <i>lacZY</i> for transcription	(Kalogeraki and
•	fusions; Km ^R	Winans, 1997)
pBBR1-MCS5	Broad-host-range P_{lac}	(Kovach et al., 1995)
r		
	-	
	expression vector;	
pIV103	expression vector; Gm ^R	
pJX103	expression vector; Gm ^R pNPTS138 carrying	This study
	expression vector; Gm ^R pNPTS138 carrying ΔAtu0102, Km ^R	This study
pJX103 pJX104	expression vector; Gm ^R pNPTS138 carrying ΔAtu0102, Km ^R pNPTS138 carrying	
	expression vector; Gm^R pNPTS138 carrying Δ Atu0102, Km ^R pNPTS138 carrying Δ Atu3327, Km ^R	This study This study
	expression vector; Gm ^R pNPTS138 carrying ΔAtu0102, Km ^R pNPTS138 carrying	This study
pJX104	expression vector; Gm^R pNPTS138 carrying $\Delta Atu0102$, Km^R pNPTS138 carrying $\Delta Atu3327$, Km^R pVIK112 carrying <i>phoB</i> internal fragment,	This study This study
pJX104	expression vector; Gm^R pNPTS138 carrying $\Delta Atu0102$, Km^R pNPTS138 carrying $\Delta Atu3327$, Km^R pVIK112 carrying <i>phoB</i>	This study This study (Danhorn
pJX104 pTD105	expression vector; Gm^R pNPTS138 carrying $\Delta Atu0102$, Km^R pNPTS138 carrying $\Delta Atu3327$, Km^R pVIK112 carrying <i>phoB</i> internal fragment, Km^R	This study This study (Danhorn et al., 2004)
pJX104	expression vector; Gm ^R pNPTS138 carrying ΔAtu0102, Km ^R pNPTS138 carrying ΔAtu3327, Km ^R pVIK112 carrying <i>phoB</i> internal fragment, Km ^R pBBR1-MCS5	This study This study (Danhorn
pJX104 pTD105 pPM194	expression vector; Gm^R pNPTS138 carrying $\Delta Atu0102$, Km^R pNPTS138 carrying $\Delta Atu3327$, Km^R pVIK112 carrying <i>phoB</i> internal fragment, Km^R pBBR1-MCS5 $P_{lac}.pit_{Sm}$, Gm^R	This study This study (Danhorn et al., 2004) This study
pJX104 pTD105	expression vector; Gm ^R pNPTS138 carrying ΔAtu0102, Km ^R pNPTS138 carrying ΔAtu3327, Km ^R pVIK112 carrying <i>phoB</i> internal fragment, Km ^R pBBR1-MCS5	This study This study (Danhorn et al., 2004)

^a All *A. tumefaciens* strains are derivatives of C58, except TD5, which is derived from the Ti plasmidless derivative *A. tumefaciens* NTL4, originally from C58 (Luo et al., 2001).

Download English Version:

https://daneshyari.com/en/article/4358773

Download Persian Version:

https://daneshyari.com/article/4358773

Daneshyari.com