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We study the calculation of the largest pairwise intersections in a given set family. We 
give combinatorial and algorithmic results both for the worst case and for set families 
where the frequencies of elements follow a power law, as words in texts typically do. 
The results can be used in faster preprocessing routines in a simple approach to multi-
document summarization.
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1. Introduction

This work deals with a natural type of problem: Given a family of n sets called input sets, and a number k, compute the k
largest pairwise intersections of the input sets. For brevity we call them 2-intersections. In particular, in the case k = (n

2

)
we 

want to enumerate all 2-intersections. We will have to state both the assumptions on the set family and the output formats 
more precisely, see the technical results later on.

The problem has applications in information retrieval, data mining and data compression (see [17] for some pointers), 
and is also known under the name top-k set similarity (self-)joins for the overlap similarity measure. (Here we do not consider 
similarity measures other than overlap, that is, the intersection size.) The fast heuristic algorithms proposed in [17] and 
similar works rely on the very different element frequencies in real data sets (where the frequency of an element is the 
number of input sets containing it). The first main idea is to process the elements by increasing frequencies f , using the 
trivial fact that an element appearing in f input sets can appear in at most 

( f
2

)
top 2-intersections, thus the total number 

of candidate pairs does not grow too much in the beginning. The second main idea called prefix filtering (which is actually 
a branch-and-bound heuristic) is to bound the maximum possible size of 2-intersections in terms of the number of frequent 
elements not yet considered, which allows to exclude candidate pairs that provably cannot be among the top k any more.

One question is how many different pairs need to be examined in this way until the k largest 2-intersections are filtered 
out. Also note that we may only lately detect 2-intersections that solely contain frequent elements, if we only consider the 
rare elements first. Therefore it is an obvious idea to complement the above incremental heuristic with a separate treatment 
of the frequent elements. A few elements that appear together in most of the input sets are likely to form already some large 
2-intersections which can be precomputed and later combined with the candidate pairs from the low-frequency elements, 
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rather than only working with upper bounds based on the number of frequent elements in the single input sets. It fact, it 
seem to be the frequent elements that mainly determine the final 2-intersection sizes.

This also connects to the so called signature-based heuristics as discussed in [2], however for other similarity measures. 
The idea is that similar sets must have some common “signatures” on partitions of the input (here we cannot go into any 
details) and can be detected by that. A combination of these approaches is the “segment bounding algorithm” proposed 
in [3]. There the set of elements is divided into segments according to frequencies, and then the largest 2-intersections 
within certain segments are computed by subset hashing, and finally combined following some simple priority rules. The 
authors report that their algorithm actually runs faster than the algorithm from [17] especially on large data sets.

To conclude, there is empirical evidence that fairly simple heuristics for computing the largest 2-intersections scale 
very well and are far below the naive quadratic time bound, see also [8,17] and related work cited there. But to our best 
knowledge no thorough mathematical analysis has been done that would really explain the good running times by, for 
instance, giving worst-case guarantees under certain structural assumptions valid on real data. Such results would not only 
provide a better understanding of the heuristics in retrospect. More importantly, they could also suggest algorithms for 
subproblems that further refine and speed up the practical methods. The present paper aims at some steps in this direction. 
In particular, the findings in [3] give rise to the algorithmic and combinatorial problems studied here.

Our practical motivation comes from automatic multi-document summarization. An extractive summary of a large col-
lection of sentences, e.g., from news, comments or product reviews, is a small subset of sentences that reflects the most 
relevant content. Various summarization methods are based on scores, sentence similarity measures, and partly also graph-
theoretic concepts, see, for instance, [4,10,15,16,18]. In our own approach2 we consider sentences, after some preprocessing, 
as sets of words. Combinations of words appearing in several sentences are important, because several authors wrote, usu-
ally independently, about the same issues. Thus we compute the largest intersections of word sets and select some of the 
involved sentences for a summary, by further simple selection criteria. The approach seems to work reasonably well despite 
its conceptual simplicity. However, the present paper only deals with related complexity questions rather than the quality 
of summaries. Specifically, a concern for large text collections is that naive enumeration of all intersections needs quadratic 
time in the number of sets, whereas we only need the largest ones. The number n of sentences can be some hundreds 
but also many thousands, and processing times sum up to long waiting times when many collections shall be summarized. 
Luckily, word frequencies in real texts essentially follow power laws, see [12], and one can take advantage of this property.

In data mining and information retrieval applications, usually the intersection size is normalized by the set sizes, leading 
to various similarity measures (overlap coefficient, cosine, Dice, Jaccard, and others). However, the absolute intersection size 
is suitable for our approach to multi-document summarization. Especially in informal text pieces like customer reviews of 
products it matters which issues have been brought up repeatedly, i.e., which subsets of words appear in several sentences, 
regardless of what else has been said in these sentences and how long they are. Not the whole sentences need to be similar, 
but they have to mention the same issues, possibly among others. Nevertheless it could be interesting for further research 
to adapt the complexity results to other similarity measures. Next, it can be meaningful to weight the words according to, 
for instance, word type or general importance scores known in advance. In the present paper we study the unweighted case 
only, however some considerations may be extended more or less straightforwardly to weighted elements. The number k of 
pairs in the output can be assumed to be small, since for a concise summary we only have use for very few, most significant 
repeated word combinations, while the others are necessarily neglected.

Overview of results: Section 2 provides some definitions and basic facts. Section 3 deals with the frequent elements. We 
consider subsets of a fixed set of small size r, such that even times exponential in r are affordable. (In the realm of 
parameterized complexity, r would be our small parameter.) For computing the k largest 2-intersections of a family of n
subsets we derive several worst-case time bounds. It depends on the constellation of r, n, k which of the algorithms is the 
fastest. We also propose Hasse diagrams as succinct enumerations of the intersecting pairs of sets. Section 4 shows that, 
if the element frequencies follow a power law, then the number of nonempty pairwise intersections of rare elements, as 
well as the total number of different pairwise intersections, is o(n2). We save only a logarithmic factor in the worst case, 
compared to a �(n2) result for general set families (Proposition 11). However, the proof uses only the element frequencies 
and no higher-order structural properties that may yield smaller numbers in real data. Section 5 adds a result in this 
direction. We consider intersections of size at least 2 and get a time bound where n appears only linearly, multiplied with 
input parameters that appear to be usually small in text data.

Related topics: A set family naturally corresponds to a bipartite graph whose vertices on both sides represent sets and 
elements, respectively, and edges represent the element relation. Then, a selection of sets along with the elements in 
their intersection form a biclique, i.e., complete bipartite subgraph. Thus our problem can be viewed as a pruned biclique 
enumeration problem, where we only want the bicliques with two vertices on one side but many vertices on the other side. 
Maximal biclique enumeration in general is well studied [1,7,9,11]. In [6] we have also given an algorithm for the maximal 
biclique enumeration that runs faster than in the general case under power-law assumptions on the degree sequence. 
According to an idea in [5] (see also [14]), pairs of similar sets in a set family can be efficiently identified by locality-sensitive 
hashing. In particular, this applies to set similarity measures where the intersection size is normalized by the size of the sets, 
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