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Non-deterministic graph searching was introduced by Fomin et al. to provide a unified 
approach for pathwidth, treewidth, and their interpretations in terms of graph searching 
games. Given q ≥ 0, the q-limited search number, sq(G), of a graph G is the smallest 
number of searchers required to capture an invisible fugitive in G , when the searchers 
are allowed to know the position of the fugitive at most q times. The search parameter 
s0(G) corresponds to the pathwidth of a graph G , and s∞(G) to its treewidth. Determining 
sq(G) is NP-complete for any fixed q ≥ 0 in general graphs and s0(T ) can be computed in 
linear time in trees, however the complexity of the problem on trees has been unknown 
for any q > 0.
We introduce a new variant of graph searching called restricted non-deterministic. The 
corresponding parameter is denoted by rsq and is shown to be equal to the non-
deterministic graph searching parameter sq for q = 0, 1, and at most twice sq for any q ≥ 2
(for any graph G).
Our main result is a polynomial time algorithm that computes rsq(T ) for any tree T and 
any q ≥ 0. This provides a 2-approximation of sq(T ) for any tree T , and shows that the 
decision problem associated to s1 is polynomial in the class of trees. Our proofs are based 
on a new decomposition technique for trees which might be of independent interest.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Graph searching problems have been extensively studied for practical aspects such as pursuit-evasion problems [1], but 
also for their close relationship with fundamental structural parameters of graphs, namely pathwidth and treewidth, that 
serve as important tools in Robertson and Seymour’s Graph Minor Theory [2]. In particular, many intractable problems can 
be solved in linear time when the input is restricted to graphs of bounded treewidth [3]. In this paper, tw(G) and pw(G)

denote the treewidth and the pathwidth of a graph G , respectively.
Graph searching is a game in which a team of searchers is aiming at capturing a fugitive hidden in a graph. The searchers 

can be placed on or removed from the vertices of the graph. The fugitive stands at some vertex of the graph and can move 
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arbitrary fast from its current vertex to another by following the paths in the graph as long as it does not cross any vertex 
occupied by a searcher. The fugitive has perfect knowledge about the position and future moves of searchers. The fugitive is 
caught when it occupies the same vertex as a searcher and has no way to escape. A vertex is contaminated if it may harbor 
the fugitive, and is cleared by placing a searcher on it. Once cleared, a vertex remains clear as long as every path from it 
to a contaminated vertex is guarded by at least one searcher. Otherwise, the vertex is recontaminated. The graph is clear as 
soon as all the vertices are simultaneously clear. Therefore, the fugitive is caught. A node (search) strategy is a sequence of 
searchers moves (place or remove), or steps, that guarantees the fugitive’s capture. A strategy is monotone if no vertex is 
visited more than once by a searcher, i.e., if recontamination never occurs.

Two main variants of graph searching have been particularly studied: either the fugitive is invisible, meaning that the 
searchers do not know its position unless it is caught, or it is visible, i.e., at any step of the strategy, the searchers know 
the current position of the fugitive and they can thus adapt their strategy according to this knowledge. The node search 
number s(G) (resp., the visible search number vs(G)) of a graph G is the minimum number of searchers for which a strategy 
capturing an invisible (resp., visible) fugitive exists for G [4,5]. One important result of the field is that recontamination does 
not help. That is, for any graph G , there is a monotone strategy using the optimal number of searchers to capture an invisible 
(resp., visible) fugitive in G [4,5]. In particular, it follows that the node search number and the visible search number of a 
graph are closely related to its pathwidth and treewidth, namely, for any graph G , s(G) = pw(G) + 1 and vs(G) = tw(G) + 1
(see [6] for a survey on graph searching).

In [7], Fomin et al. introduced a parametric variant called non-deterministic graph searching, and proved that the 
corresponding parameter establishes a link between invisible and visible search numbers, i.e., between pathwidth and 
treewidth. They proved that computing this parameter is NP-hard in general and asked whether it can be computed in 
polynomial time when the input is restricted to be a tree. In this paper, we study this latter problem.

In non-deterministic graph searching, the fugitive is invisible but the searchers have the possibility to query an oracle that 
knows the current position of the fugitive (a limited number of times). That is, given the set W of clear vertices, performing 
a query returns a connected component C of G \ W . The vertices of C remain contaminated and those of G \ C become 
clear. Obviously, the number of searchers required to catch the fugitive cannot increase when the number of permitted 
performing-a-query steps increases.

A non-deterministic (search) strategy is a sequence of the three basic operations:

• Placing a searcher on a vertex,
• Removing a searcher from a vertex, and
• Performing a query.

Note that such a strategy corresponds to a decision tree so that the performing-a-query steps correspond to the forks in 
the decision-tree. A possible execution of this strategy is a sequence of such operations following a path of the decision-tree 
from its root to a leaf, corresponding to some choice for any query step, i.e., depending on the behavior of the fugitive. The 
strategy must result in catching the fugitive whatever it does. The number of query-steps, denoted by q ≥ 0, is however 
fixed. The q-limited search number of a graph G , sq(G), is the smallest number of searchers required to catch a fugitive 
performing at most q query-steps. Mazoit and Nisse [8] generalized the monotonicity results of [4] and [5]. They proved 
that recontamination does not help neither in non-deterministic case: for any q ≥ 0 and any graph G , there is a monotone 
strategy performing at most q queries that uses at most sq(G) searchers [8]. Hence, throughout this paper, we consider only 
monotone strategies. We moreover assume that useless moves such as placing a searcher on a clear or occupied node never 
occur.

The monotonicity result is also important because monotone non-deterministic graph searching realizes a link between 
treewidth and pathwidth through the notion of q-branched tree decompositions [7]. The definition of q-branched treewidth 
and its relationship with the q-limited search number are as follows.

Given a rooted tree T, with root r, a branching node of T is a node with at least two children. Let q ≥ 0. A q-branched 
tree T is a rooted tree such that every path in T from (root) r to a leaf contains at most q branching nodes.

Let G = (V , E) be a connected graph and let q ≥ 0. A q-branched tree decomposition [7] of a graph G is a pair (T, X )

where T is a q-branched tree on a set of nodes I, and X = {Xi : i ∈ I} is a collection of subsets of V , subject to the 
following three conditions:

1. V = ∪i∈IXi ,
2. for any edge e in G , there is a set Xi ∈X which contains both end-points of e,
3. for any triple i1, i2, i3 of nodes of T, if i2 is on the path from i1 to i3 in T, then Xi1 ∩ Xi3 ⊆ Xi2 .

The width of (T, X ) is defined as w(T, X ) = maxi∈I |Xi | − 1. The q-branched treewidth of a graph G , denoted by twq(G), 
is the minimum width of any q-branched tree decomposition of G . Note that twq′(G) ≤ twq(G) for any q ≤ q′ . Obviously, for 
q large enough, twq(G) = tw(G), where tw(G) denotes the treewidth of G . In other word, tw(G) = minq≥0 twq(G) =: tw∞(G). 
Moreover, tw0(G) = pw(G), where pw(G) denotes the pathwidth of G . In this way, the family of parameters twq(G) can be 
regarded as an interpolating family of parameters between the pathwidth and the treewidth a graph G . The main theorem 
of [7] and the monotonicity result of [8] establish the link between q-limited search number and q-branched treewidth.
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