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Given a function from Zn to itself one can determine its polynomial representability 
by using Kempner function. In this paper we present an alternative characterization of 
polynomial functions over Zn by constructing a generating set for the Zn-module of 
polynomial functions. This characterization results in an algorithm that is faster on average 
in deciding polynomial representability. We also extend the characterization to functions 
in several variables.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we deal with the following question: given a function from a finite integer ring to itself does there exist a 
polynomial that evaluates to the function? In the case of real numbers R, if the function is specified at only a finite number 
of points it is possible to obtain a polynomial using Lagrange interpolation [11]. For analytic functions one may get an 
approximation using Taylor’s series. This problem has been well-studied over finite fields as well. It was noted by Hermite 
[7] that every function over finite field of the form Zp , which is the set of integers modulo prime p, can be represented by 
a polynomial. This result was extended by Dickson [5] to finite fields Fq , where q is a prime power. Moreover, it was also 
shown that there exists a unique polynomial of degree less than q that evaluates to the given function. A thorough study of 
finite fields can be found in [12].

The property of polynomial representability does not hold over finite commutative rings. In this paper we study the 
problem of polynomial representability over finite integer rings Zn , which is the set of residue classes of Z modulo n.

The earliest work in this direction was by Kempner [10]. It was proved that the only residue class rings over which 
all functions can be represented by polynomials are Zp , where p is prime. Kempner [10] also introduced the function 
(sometimes referred to as Smarandache function) defined as follows.

Definition 1.1. Kempner function μ : N −→ N is defined as μ(n) is the smallest positive integer such that n | μ(n)!.

The Kempner function plays an important role in the study of polynomial functions. In his work, Kempner showed that 
there exists a polynomial of degree less than μ(n) that evaluates to a function over Zn , if the function is polynomially 
representable. An easy method to calculate μ(n) is also given in [10]. One can show that when n factors into primes as 
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t , then μ(n) = max(μ(pei

i )) is of the form r · pk for some prime divisor pk of n where r is a positive integer less 
than or equal to ek .

It is obvious that the Kempner function is not monotonic: when n is prime μ(n) = n, otherwise μ(n) < n. Kempner 
function has been studied for its own merit and a discussion on the properties of this function is beyond the scope of this 
paper. However, one may claim that as n increases, μ(n) tends to be much smaller than n, by which one means that for 
most cases μ(n) tends to be sub-logarithmic compared to n [13].

Polynomial representation in Zn has since then been studied by Carlitz [2]. The number of polynomial functions over Zn , 
when n is a prime power, is given by Keller and Olson [9]. This was extended to arbitrary positive integer n by Singmas-
ter [15], where the Kempner function was used to give a canonical representation for the polynomial functions. Other 
notable results are given in [14,1,3,4].

Recently, the problem of polynomial representability of functions in several variables has been studied by Hungerbühler 
and Specker [8]. In this work, an elegant characterization of polynomial functions was given by generalizing the Kempner 
function to several variables. The result makes use of partial difference operator to determine whether a given function 
from Zm

n to Zn is polynomially representable. This work does not provide a computational complexity analysis but one can 
see that this method does not lead to an efficient algorithm for verifying polynomial representability of the functions. The 
characterization involves repeated computation of the difference operator leading to an algorithm whose time complexity 
is very large. In terms of computation, its performance is comparable to the intuitive method of checking for existence 
of scalars c0, . . . , cμ(n)−1 ∈ Zn such that the polynomial 

∑μ(n)−1
i=0 ci Xi evaluates to the given function. For instance, in the 

case of single variable, the computation of �k g(0) requires O (k) operations for each 0 ≤ k ≤ n, hence checking polynomial 
representability may require O (n2) operations.

In this paper we present a new characterization by adopting an entirely new approach that gives rise to a faster algo-
rithm. For this, we generalize a characterization of polynomial functions over Zpe that is proposed in [6].

1.1. Contributions

In this paper we give an alternative characterization of polynomial functions over Zn . The new characterization is based 
on the fact that the set of polynomial functions forms a Zn-submodule of the Zn-module of all functions from Zn to 
itself. We describe a ‘special’ generating set for this Zn-module of polynomial functions. When n is prime this generating 
set forms the standard basis for the vector space of polynomial functions. We present a new algorithm based on this 
characterization and show that this is faster on average in deciding the polynomial representability of functions. We also 
extend the characterization to functions in several variables and present an analysis of the algorithm in this case.

1.2. Organization

The paper is organized as follows. Section 2 contains the notation and necessary basic lemmas. The main theorem and 
the characterization are given in Section 3. An algorithm based on the result is given in Section 4. In Section 5 we discuss 
the complexity of the algorithm and compare its performance against an algorithm that makes use of a canonical set of 
generators. The result is extended to functions in several variables in Section 6. Section 7 contains the concluding remarks.

2. Background

Throughout this paper we use n to denote a positive integer of the form n = pe1
1 pe2

2 . . . pet
t , where p1 < p2 < . . . < pt are 

distinct primes. Kempner function is denoted by μ (Definition 1.1). Since n is fixed through out this paper, we abbreviate 
μ(n) to μ in some formulae. In Zn , each element of the congruence class is represented by the least non-negative residue 
modulo n and all computations are performed modulo n unless explicitly mentioned otherwise. Polynomials are of the form 
c0 + c1 X + . . . + cr Xr , where X is the indeterminate and coefficients are from Zn .

A function f : Zn −→ Zn is represented as an n-tuple (a0, a1, . . . , an−1), where the ith component ai = f (i), for i =
0, . . . , n − 1. Hence we denote the set of all functions by Zn

n .
Given v = (a0, a1, . . . , an−1), v〈k〉 represents the kth cyclic shift to the right, for k = 0, . . . , n − 1. That is

v〈k〉 = (an−k,an−k+1, . . . ,an−k−1),

and we assume that v〈0〉 = v . In other words v〈k〉(i) = v(i − k) for all k = 0, . . . , n − 1.
Given a set {v1, v2, . . . , vr} ⊂ Zn

n , 〈v1, v2, . . . , vr〉 denotes the Zn-module generated by that set. 〈 〈v1, v2, . . . , vr〉 〉 denotes 
the Zn-module generated by vi with i = 1, . . . , r along with their cyclic shifts, i.e., 〈 〈v1, v2, . . . , vr〉 〉 = {∑αi j v〈 j〉

i | αi j ∈ Zn, i =
1, . . . , r, j = 0, . . . , n − 1}. We say a function is polynomial if there exists some polynomial in Zn[X] that evaluates to the 
given function.

We now make a few simple observations that are easy to verify.

Lemma 2.1. Suppose v ∈ Zn
n is a polynomial function. Then v〈k〉 is also a polynomial function for all k = 0, . . . , n − 1.
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