
Theoretical Computer Science 578 (2015) 42–57

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

On the boundary of regular languages ✩

Jozef Jirásek a,1, Galina Jirásková b,∗,2

a Institute of Computer Science, Faculty of Science, P.J. Šafárik University, Jesenná 5, 040 01 Košice, Slovakia
b Mathematical Institute, Slovak Academy of Sciences, Grešákova 6, 040 01, Košice, Slovakia

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 October 2013
Received in revised form 25 June 2014
Accepted 14 January 2015
Available online 20 January 2015

Keywords:
Regular languages
Boundary
Finite automata
State complexity

We prove that the tight bound on the state complexity of the boundary of regular
languages, defined as bd(L) = L∗ ∩ (L)∗, is 3/8 · 4n + 2n−2 − 2 · 3n−2 − n + 2. Our witness
languages are described over a five-letter alphabet. Next, we show that this bound cannot
be met by any quaternary language if n ≥ 5. However, the state complexity of boundary in
the quaternary case is smaller by just one. Finally, we prove that the state complexity of
boundary in the binary and ternary cases is Θ(4n).

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The famous Kuratowski’s “14-theorem” states that, in a topological space, at most 14 sets can be produced by applying
the operations of closure and complement to a given set [2,5]. In analogy with this theorem, Brzozowski et al. [1] proved
that there is only a finite number of distinct languages that arise from the operations of Kleene (or positive) closure and
complement performed in any order and any number of times. Every such language can be expressed, up to inclusion of the
empty string, as one of the following five languages and their complements: L, L∗, (L)∗, (L∗)∗, ((L)∗)∗ , where L and L∗ denote
the complement and Kleene closure of L, respectively. If the state complexity of a regular language L, that is, the number
of states of the minimal deterministic finite automaton for L, is n, then the state complexity of L is also n, and the state
complexity of L∗ and (L)∗ is at most 3/4 · 2n [6,13]. The state complexity of (L∗)∗ could potentially be double-exponential
[9], however, as shown in [3], it is only 2Θ(n log n) .

Brzozowski, Grant, and Shallit in [1] also studied the concepts of “open” and “closed” sets. A language L is said to be
Kleene-closed if L = L∗ , where L∗ is the Kleene closure of L. A language is Kleene-open if its complement is Kleene-closed.
The same notions can be defined for positive closure. These are natural analogues of the concepts with the same names
from point-set topology, and in [1], the authors found many natural analogues of the classical theorems.

The boundary of a language is defined as bd(L) = L∗ ∩ (L)∗ , respectively, as L+ ∩ (L)+ for positive closure [1,9,10]. In this
paper, we study the state complexity of the boundary of regular languages in the case of Kleene closure. To simplify the

✩ This work was presented at the CIAA 2013 conference held in Halifax, Canada on July 16–19, 2013, and its extended abstract appeared in the conference
proceedings [4].

* Corresponding author.
E-mail addresses: jozef.jirasek@upjs.sk (J. Jirásek), jiraskov@saske.sk (G. Jirásková).

1 Supported by VEGA grant 1/0142/15.
2 Supported by VEGA grant 2/0084/15.

http://dx.doi.org/10.1016/j.tcs.2015.01.022
0304-3975/© 2015 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2015.01.022
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jozef.jirasek@upjs.sk
mailto:jiraskov@saske.sk
http://dx.doi.org/10.1016/j.tcs.2015.01.022
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2015.01.022&domain=pdf

J. Jirásek, G. Jirásková / Theoretical Computer Science 578 (2015) 42–57 43

exposition, we will write everything in an exponent notation, using c to represent complement, thus Lc∗ stands for (L)∗ ,
and so bd(L) = L∗ ∩ Lc∗ .

We show that if a language L over an alphabet Σ is accepted by an n-state deterministic finite automaton (DFA), then
the boundary bd(L) is accepted by a DFA of at most 3/8 · 4n + 2n−2 − 2 · 3n−2 − n + 2 states. We also show that this
bound is tight in the case when the alphabet Σ has at least five symbols. Next, we show that if n ≥ 5, then this bound
cannot be met by any language defined over a four-letter alphabet, and that the tight bound in the quaternary case is
3/8 · 4n + 2n−2 − 2 · 3n−2 − n + 1. Finally, we prove that the state complexity of boundary in the binary and ternary cases
is Θ(4n). We also study the case when in a DFA for a language L, only the initial state is final. The upper bound for the
boundary of L in such a case is (n + 2) · 2n−2 + 1, and we prove that this bound can be met by a binary language.

2. Preliminaries

In this section, we recall some basic definitions. For details and all unexplained notions, the reader may refer to [8,11,12].
For integers i and j with i ≤ j, we denote by [i, j] the set of integers {k | i ≤ k ≤ j}. The cardinality of a finite set A is

denoted by |A|, and its power-set by 2A .
Let Σ be a finite non-empty alphabet. Then Σ∗ denotes the set of all strings over the alphabet Σ , including the empty

string ε. A language over the alphabet Σ is any subset of Σ∗ . Let K and L be languages over an alphabet Σ . Then Lc =
Σ∗ \ L, K ∩ L = {w ∈ Σ∗ | w ∈ K and w ∈ L}, K L = {uv | u ∈ K and v ∈ L}, and L∗ = ⋃

i≥0 Li , where L0 = {ε} and Li+1 = Li L.
The boundary of a language L is the set bd(L) = L∗ ∩ Lc∗ , where we use Lc∗ to denote (Lc)∗ .

A nondeterministic finite automaton (NFA) is a quintuple A = (Q , Σ, ·, s, F), where Q is a finite non-empty set of states,
Σ is a finite alphabet, ·: Q × Σ → 2Q is the transition function which is extended to the domain 2Q × Σ∗ in the natural
way, s ∈ Q is the initial state, and F ⊆ Q is the set of final states. The language accepted by A is the set L(A) = {w ∈ Σ∗ |
s · w ∩ F 	= ∅}.

An NFA A = (Q , Σ, ·, s, F) is deterministic (and complete) (DFA) if |q · a| = 1 for each q in Q and each a in Σ . In such
a case, we write q · a = q′ instead of q · a = {q′}. A state q of the DFA A is reachable if there exists a string w in Σ∗ such
that s · w = q. Two states p and q are distinguishable if there exists a string w such that exactly one of the states p · w and
q · w is final. Two states are equivalent if they are not distinguishable.

The state complexity of a regular language L, sc(L), is the smallest number of states in any DFA recognizing L. It is well
known that a DFA is minimal (with respect to the number of states) if all its states are reachable, and no two distinct states
are equivalent.

Every symbol a of the DFA A may be viewed as a transformation on the set Q , that is, as a mapping from Q to Q .
A symbol a is called a permutation symbol if a performs a permutation on Q .

The symmetric group is the group of all permutations on the set {0, 1, . . . , n − 1}. The symmetric group is generated by a
circular shift that maps i to (i + 1) mod n, and by a swap permutation that swaps 0 and 1 and maps any other i to itself.

Every NFA A = (Q , Σ, ·, s, F) can be converted to an equivalent DFA A′ = (2Q , Σ, ·′, {s}, F ′), where R ·′ a = R · a and
F ′ = {R ∈ 2Q | R ∩ F 	= ∅} by the subset construction [7]. The DFA A′ is called the subset automaton of the NFA A. The subset
automaton need not be minimal since some of its states may be unreachable or equivalent.

Let A = (Q A, Σ, sA, ·A, F A) and B = (Q B , Σ, sB , ·B , F B) be two DFAs. Then L(A) ∩ L(B) is recognized by the product
automaton A × B = (Q A × Q B , Σ, ·, (sA, sB), F A × F B), where (p, q) · a = (p ·A a, q ·B a).

3. Upper bound: construction of DFAs for boundary

The boundary of a regular language L is defined by bd(L) = L∗ ∩ Lc∗ , where Lc∗ = (Lc)∗ . Since the state complexity of
star is 3/4 · 2n [6,13], the trivial upper bound on the state complexity of boundary is 9/16 · 4n . The aim of this section is to
get a slightly better upper bound 3/8 · 4n + 2n−2 − 2 · 3n−2 − n + 2.

We start with the construction of a DFA for L∗ ∩ Lc∗ . Without loss of generality, we may assume that the empty string is
in L. Let a language L be accepted by a DFA A = (Q , Σ, ·, s, F), where |Q | = n, s ∈ F , |F | = k, and · is the transition function
extended to the domain 2Q × Σ∗ in a natural way. Let F c = Q \ F .

Construct an NFA N for the language L∗ from the DFA A as follows. For each state q and each symbol a, if q · a ∈ F ,
then add the transition from q to s on a. Next, construct an NFA N ′ for the language Lc∗ from the DFA A as follows. First,
interchange the sets of final and non-final states to get a DFA for Lc . Then, add a transition from a state q to the state s on
a symbol a whenever q · a ∈ F c . Finally, add a new initial and final state q0 that goes on each symbol a to {s · a} if s · a /∈ F c ,
and to {s, s · a} if s · a ∈ F c . Fig. 1 illustrates the construction of NFAs N and N ′ . Denote the transition functions of the NFAs
N and N ′ , extended to the domain 2Q × Σ∗ in a usual way, by ◦ and •, respectively.

Let D and D ′ be the subset automata of the NFAs N and N ′ , respectively. Then the language L∗ ∩ Lc∗ is accepted by
the product automaton D × D ′ , the states of which are pairs of subsets of Q . The initial state of the product automaton is
the pair ({s}, {q0}), and a pair (S, T) is final if S is a final state in D and T is a final state in D ′ , that is, if S ∩ F 	= ∅ and
T ∩ F c 	= ∅. Each pair (S, T) goes to the pair (S ◦ a, T • a) in the product automaton. Notice that

S ◦ a =
{

S · a, if S · a ∩ F = ∅,

S · a ∪ {s}, otherwise,
T • a =

{
T · a, if T · a ∩ F c = ∅,

T · a ∪ {s}, otherwise.

Download English Version:

https://daneshyari.com/en/article/435988

Download Persian Version:

https://daneshyari.com/article/435988

Daneshyari.com

https://daneshyari.com/en/article/435988
https://daneshyari.com/article/435988
https://daneshyari.com

