
Theoretical Computer Science 565 (2015) 63–76

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Reductions between scheduling problems with non-renewable 

resources and knapsack problems

Péter Györgyi a, Tamás Kis b,∗
a Department of Operations Research, Loránd Eötvös University, H-1117 Budapest, Pázmány Péter sétány 1/C, Hungary
b Institute for Computer Science and Control, Hungarian Academy of Sciences, H-1111 Budapest, Kende str. 13–17, Hungary

a r t i c l e i n f o a b s t r a c t

Article history:
Received 7 December 2013
Received in revised form 11 September 
2014
Accepted 6 November 2014
Available online 13 November 2014
Communicated by G. Ausiello

Keywords:
Approximation preserving reductions
Scheduling problems
Knapsack problems

In this paper we establish approximation preserving reductions between scheduling 
problems in which jobs either consume some raw materials, or produce some intermediate 
products, and variants of the knapsack problem. Through the reductions, we get new 
approximation algorithms, as well as inapproximability results for the scheduling problems.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study approximation preserving reductions between single machine scheduling problems extended with 
non-renewable resources, and various knapsack problems. We will consider two types of scheduling problems: (i) scheduling 
of jobs producing some intermediate products, and (ii) scheduling of jobs consuming some raw materials. In the former case, 
the jobs produce intermediate products to meet demands at given dates, whereas in the second case, jobs consume raw 
materials whose stock is replenished at given dates and in known quantities. On the other hand, we will consider two 
variants of the knapsack problem. Beside the basic knapsack problem, in which there is a set of items each having a size 
and a profit, and a subset of items of maximum profit, but of limited total size must be chosen, we will also consider the 
multi-dimensional knapsack problem in which the knapsack has sizes in multiple dimensions.

Approximation preserving reductions are useful for obtaining both positive and negative results. Consider, say, the PTAS 
reduction, which reduces an optimization problem Π1 to another optimization problem Π2 in such a manner that if there is 
a PTAS for Π2, then this yields a PTAS for Π1 as well (for formal definitions, see Section 3). So, we can get a positive result 
for an optimization problem Π1, i.e., a PTAS, if we can identify another optimization problem Π2 which admits a PTAS, and 
if we manage to devise a PTAS reduction from Π1 to Π2. On the other hand, if we want to prove that some problem Π2
does not admit a PTAS unless P = NP , it suffices to find another optimization problem Π1 which does not admit a PTAS 
unless P =NP , and a PTAS reduction from Π1 to Π2. Among the many types of reductions published in the literature, we 
will only use the PTAS-, the FPTAS- and the Strict-reductions (see Section 3).

Before we proceed we provide a more formal definition of those problems studied in this paper.
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1.1. Knapsack problems

In the (basic) Knapsack Problem (KP) there is a set of n items j with profit v j and weight w j . One has to select a 
subset of the items with the largest total profit so that the total weight of the selected items is at most a given constant 
(‘capacity’) b′ . Formally:

OPTKP := max
n∑

j=1

v jx j (1)

n∑

j=1

w jx j ≤ b′ (2)

x j ∈ {0,1}, j = 1, . . . ,n. (3)

We will use the notation OPTKP for the optimal value of this problem.
In the r-dimensional Knapsack Problem (r-DKP) each item has r weights and there are r constraints:

OPTr−DKP := max
n∑

j=1

v jx j (4)

n∑

j=1

wij x j ≤ b′
i, i = 1, . . . , r (5)

x j ∈ {0,1}, j = 1, . . . ,n. (6)

The optimum value of this problem is denoted by OPTr−DKP .

1.2. Resource scheduling problems

In this section we recapitulate two resource scheduling problems, the Delivery tardiness problem (see [10]) and the Mate-
rial consumption problem (see e.g. [5,15]).

In the Delivery tardiness problem (DTPr
q) there are a single machine, a finite set of n jobs, and a set of r materials produced 

by the jobs. The machine can perform only one job at a time, and preemption is not allowed. Job J j , j ∈ {1, . . . , n}, has 
a processing time p j ∈ Z+ , and produces some materials, which is described by an r-dimensional non-negative vector 
a j ∈ Z

r+ . There are due dates along with required shipments, i.e., pairs (u�, b�) with u� ∈ Z+ , and b� ∈ Z
r+ , � = 1, . . . , q, 

and 0 ≤ u1 < · · · < uq . The solution of the problem is a sequence σ of the jobs. The starting time of the ith job is then 
Sσ(i) = ∑i−1

k=1 pσ(k) . A shipment (u�, b�) is met by S , if the total production of those jobs finishing by u� is at least b̃� :=∑�
k=1 bk , i.e., 

∑
( j : S j+p j≤u�)

a j ≥ b̃� (coordinate wise), otherwise it is tardy. Let C�(S) be the earliest time point t ≥ 0 with 
∑

( j : S j+p j≤t) a j ≥ b̃� . The tardiness of a shipment is T�(S) := max{0, C�(S) − u�}. The maximum tardiness of a schedule is 
Tmax(S) := max� T�(S). The objective is to minimize the maximum tardiness. We denote this problem by 1|dm = r|Tmax, 
where ‘dm = r’ indicates that the number of products is fixed to r (not part of the input). An important special case of 
this problem is when there are only two time points (0 ≤ u1 < u2) when some product is due (denoted by 1|dm = r, q =
2|Tmax). Since Tmax can be 0 in an optimal solution, we will consider the shifted delivery tardiness objective function defined 
as T s

max := Tmax + const, where const is a positive constant, depending on the problem data.
In the Material consumption problem (MCPr

q) there are a single machine, a finite set of n jobs, and a set of r materi-
als consumed by the jobs. The machine can perform only one job at a time, and preemption is not allowed. There are 
n jobs J j , j = 1, . . . , n, each characterized by two numbers: processing time p j and quantities consumed from the re-
sources a j ∈ Z

r+ . The resources have initial stocks, and they are replenished at given moments in time, i.e., there are q pairs 
(u1, b1), . . . , (uq, bq), with 0 = u1 < · · · < uq being the time points and the b� ∈ Z

r+ the quantities supplied. A schedule S
specifies a starting time for each job such that the jobs do not overlap in time, and the total material supply up to the start-
ing time of every job is at least the total request of those jobs starting not later than S j , i.e., 

∑
(� : u�≤S j)

b� ≥ ∑
( j′ : S ′

j≤S j)
a′

j

(coordinate wise). The objective is to minimize the makespan defined as the maximum job completion time. We denote this 
problem by 1|rm = r|Cmax, where ‘rm = r’ indicates that the number of the raw materials is fixed to r (not part of the 
input). An important special case of this problem is when there are only two time points (u1 = 0 and u2 > 0) when some 
resource is supplied (1|rm = r, q = 2|Cmax).

Assumption 1. In both problems 
∑

� b� = ∑
j a j holds without loss of generality.

The notation used throughout the paper is summarized in Appendix A.
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