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We revisit the problem of searching for a target at an unknown location on a line when 
given upper and lower bounds on the distance D that separates the initial position of the 
searcher from the target. Prior to this work, only asymptotic bounds were known for the 
optimal competitive ratio achievable by any search strategy in the worst case. We present 
the first tight bounds on the exact optimal competitive ratio achievable, parameterized 
in terms of the given bounds on D , along with an optimal search strategy that achieves 
this competitive ratio. We prove that this optimal strategy is unique. We characterize 
the conditions under which an optimal strategy can be computed exactly and, when it 
cannot, we explain how numerical methods can be used efficiently. In addition, we answer 
several related open questions, including the maximal reach problem, and we discuss how 
to generalize these results to m rays, for any m ≥ 2.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Search problems are broadly studied within computer science. A fundamental search problem, which is the focus of 
this paper, is to specify how a searcher should move to find an immobile target at an unknown location on a line such 
that the total relative distance travelled by the searcher is minimized in the worst case [4,12,15]. The searcher is required 
to move continuously on the line, i.e., discontinuous jumps, such as random access in an array, are not possible. Thus, a 
search corresponds to a sequence of alternating left and right displacements by the searcher. This class of geometric search 
problems was introduced by Bellman [5] who first formulated the problem of searching for the boundary of a region from 
an unknown random point within its interior. Since then, many variants of the line search problem have been studied, 
including multiple rays sharing a common endpoint (as opposed to a line, which corresponds to two rays), multiple targets, 
multiple searchers, moving targets, and randomized search strategies (e.g., [1–4,6,8–11,14–16]).

For any given search strategy f and any given target location, we consider the ratio A/D , where A denotes the total 
length of the search path travelled by a searcher before reaching the target by applying strategy f , and D corresponds to the 
minimum travel distance necessary to reach the target. That is, the searcher and target initially lie a distance D from each 
other on a line, but the searcher knows neither the value D nor whether the target lies to its left or right. The competitive 
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ratio of a search strategy f , denoted CR( f ), is measured by the supremum of the ratios achieved over all possible target 
locations. Observe that CR( f ) is unbounded if D can be assigned any arbitrary real value; specifically, the searcher must 
know a lower bound λ ≤ D . Thus, it is natural to consider scenarios where the searcher has additional information about 
the distance to the target. In particular, in many instances the searcher can estimate good lower and upper bounds on D . 
Given a lower bound D ≥ λ, Baeza-Yates et al. [4] show that any optimal strategy achieves a competitive ratio of 9. They 
describe such a strategy, which we call the Power of Two strategy. Furthermore, they observe that when D is known to the 
searcher, it suffices to travel a distance of 3D in the worst case, achieving a competitive ratio of 3.

We represent a search strategy by a function f : N →R
+ . Given such a function, a searcher travels a distance of f (0) in 

one direction from the origin (say, to the right), returns to the origin, travels a distance of f (1) in the opposite direction 
(to the left), returns to the origin, and so on, until reaching the target. We refer to f (i) as the distance the searcher travels 
from the origin during the i-th iteration. The corresponding function for the Power of Two strategy of Baeza-Yates et al. is 
f (i) = 2iλ. Showing that every optimal strategy achieves a competitive ratio of exactly 9 relies on the fact that no upper 
bound on D is specified [4]. Therefore, it is natural to ask whether a search strategy can achieve a better competitive 
ratio when provided both lower and upper bounds λ ≤ D ≤ Λ. In what follows, we use the scale invariant ρ = Λ/λ to 
indicate how good the upper bound is. When ρ = 1, then Λ = λ. This corresponds to the case where the searcher knows D . 
Moreover, if we let ρ → ∞, this represents the case where the searcher is not given any upper bound.

Given R , the maximal reach problem, examined by Hipke et al. [12], is to identify the largest bound Λ such that there 
exists a search strategy that finds any target within distance D ≤ Λ with competitive ratio at most R . López-Ortiz and 
Schuierer [15] study the maximal reach problem on m rays, from which they deduce that the competitive ratio CR( fopt) of 
any optimal strategy fopt is at least
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When m = 2, the corresponding lower bound becomes
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They also provide a general strategy that achieves this asymptotic behaviour on m concurrent rays, given by
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Again, for m = 2 this is

f (i) =
√

1 + i

2
2iλ.

Surprisingly, this general strategy is independent of ρ . In essence, it ignores any upper bound on D , regardless of how tight 
it is. Thus, we examine whether there exists a better search strategy that depends on ρ , thereby using both the upper and 
lower bounds on D . Furthermore, previous lower bounds on CR( fopt) have an asymptotic dependence on ρ applying only 
to large values of ρ , corresponding to having only coarse bounds on D . Can we express tight bounds on CR( fopt) in terms 
of ρ?

Let fopt(i) = aiλ denote an optimal strategy for given values λ and Λ. Since fopt is optimal and D ≥ λ, we must have 
fopt(i) ≥ λ for all i ≥ 0. Therefore, ai ≥ 1 for all i ≥ 0. Moreover, for any possible position of the target, the strategy fopt must 
eventually reach it. Hence, there must be two integers i and i′ of different parities such that fopt(i) ≥ Λ and fopt(i′) ≥ Λ, 
which implies that ai ≥ ρ and ai′ ≥ ρ . Since fopt is optimal, we have fopt(i) = fopt(i′) = Λ. Moreover, let n be the smallest 
integer such that fopt(n) = Λ (equivalently, an = ρ). Since fopt is optimal, we have fopt(n + 1) = Λ (equivalently, an+1 = ρ). 
Consequently, n + 2 is the number of iterations necessary to reach the target with strategy fopt in the worst case (recall 
that the sequence starts at i = 0). The question is now to determine the sequence {ai}n

i=0 that defines fopt . López-Ortiz and 
Schuierer [15] provide an algorithm to compute the maximal reach for a given competitive ratio together with a strategy 
corresponding to this maximal reach. They state that the value n and the sequence {ai}n

i=0 can be computed using binary 
search, which increases the running time proportionally to logρ . Can we find a faster algorithm for computing fopt? Since 
in general, a0 is the root of a polynomial equation of unbounded degree (see Theorem 1), a binary search is equivalent to 
the bisection method for solving polynomial equations. However, the bisection method is a slowly converging numerical 
method. Can the computational efficiency be improved? Moreover, given ε, can we bound the number of steps necessary 
for a root-finding algorithm to identify a solution within tolerance ε of the exact value?

1.1. Overview of results

We address all of the questions raised above in Section 2. We characterize fopt by computing the sequence {ai}n
i=0 for 

the optimal strategy. We do this by computing the number of iterations n + 2 needed to find the target in the worst case. 
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