
Theoretical Computer Science 560 (2014) 348–363

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Interface simulation distances ✩

Pavol Černý a, Martin Chmelík b,∗, Thomas A. Henzinger b, Arjun Radhakrishna b

a University of Colorado Boulder, USA
b Institute of Science and Technology Austria, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 4 March 2013
Received in revised form 18 June 2014
Accepted 25 August 2014
Available online 10 September 2014

Keywords:
Alternating simulation
Quantitative analysis
Games

The classical (boolean) notion of refinement for behavioral interfaces of system components 
is the alternating refinement preorder. In this paper, we define a distance for interfaces, 
called interface simulation distance. It makes the alternating refinement preorder quantitative 
by, intuitively, tolerating errors (while counting them) in the alternating simulation game. 
We show that the interface simulation distance satisfies the triangle inequality, that the 
distance between two interfaces does not increase under parallel composition with a third 
interface, that the distance between two interfaces can be bounded from above and below 
by distances between abstractions of the two interfaces, and how to synthesize an interface 
from incompatible requirements. We illustrate the framework, and the properties of the 
distances under composition of interfaces, with two case studies.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The component-based approach is an important design principle in software and systems engineering. In order to doc-
ument, specify, validate, or verify components, various formalisms that capture behavioral aspects of component interfaces 
have been proposed [10,16,17,22]. These formalisms capture assumptions on the inputs and their order, and guarantees on 
the outputs and their order. For closed systems (which do not interact with the environment via inputs or outputs), a nat-
ural notion of refinement is given by the simulation preorder. For open systems, which expect inputs and provide outputs, 
the corresponding notion is given by the alternating simulation preorder [1]. Under alternating simulation, an interface A is 
refined by an interface B if, after any given sequence of inputs and outputs, B accepts all inputs that A accepts, and B pro-
vides only outputs that A provides. The alternating simulation preorder is a boolean notion. Interface A either is refined by 
interface B, or it is not. However, there are various reasons for which the alternating simulation can fail, and one can make 
quantitative distinctions between these reasons. For instance, if B does not accept an input that A accepts (or provides an 
output that A does not provide) at every step, then B is more different from A than an interface that makes a mistake once, 
or at least not as often as B.

We propose an extension of the alternating simulation to the quantitative setting. We build on the notion of simulation 
distances introduced in [5]. Consider the definition of alternating simulation of an interface A by an interface B as a two-
player game. In this game, Player 1 chooses moves (transitions), and Player 2 tries to match them. Player 1 chooses input 
transitions from the interface A and output transitions from interface B, Player 2 responds by a transition from the other 

✩ This research was partially supported by the European Research Council (ERC) Advanced Investigator Grant (267989: QUAREM), the Austrian Science 
Fund (FWF) projects S11402-N23 and S11407-N23 (RiSE), the Austrian Science Fund (FWF) Grant No. P 23499-N23, ERC Start grant (279307: Graph Games) 
and Microsoft faculty fellows award (2011).

* Corresponding author.

http://dx.doi.org/10.1016/j.tcs.2014.08.019
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.08.019
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
http://dx.doi.org/10.1016/j.tcs.2014.08.019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.08.019&domain=pdf


P. Černý et al. / Theoretical Computer Science 560 (2014) 348–363 349

Fig. 1. Interface examples.

system. The goal of Player 1 is to prove that the alternating simulation does not hold, by driving the game into a state from 
which Player 2 cannot match the chosen move; the goal of Player 2 is to prove that there exists an alternating simulation, by 
playing the game forever. We extend this definition to the quantitative case. Informally, we will tolerate errors by Player 2. 
However, Player 2 will pay a certain price for such errors. More precisely, Player 2 is allowed to “cheat” by following a 
non-existing transition. The price for such transition is given by an error model. The error model assigns the transitions from 
the original system a weight 0, and assigns the new “cheating” transitions a positive weight. The goal of Player 1 is then to 
maximize the cost of the game, and the goal of Player 2 is to minimize it. The cost is given by an objective function, such 
as the limit average of transition prices. As Player 2 is trying to minimize the value of the game, she is motivated not to 
cheat. The value of the game measures how often Player 2 can be forced to cheat by Player 1.

Example 1. Consider the example in Fig. 1. The two interfaces on the left side (IntA and IntB) represent requirements 
on a particular component by a designer. The three interfaces (Int1, Int2, and Int3) on the right side are interfaces for 
different off-the-shelf components provided by a vendor. We illustrate how interface simulation distances can be used by 
the designer to choose a component whose interface satisfies her requirements most closely. Interface Int1 is precisely the 
interface required by IntB, so the distance from IntB to Int1 will be 0. However, the distance from IntA to Int1 is much 
greater. Informally, this is because Player 1, choosing a transition of IntA could choose the b? input. Player 2, responding by 
a transition of Int1 has to cheat by playing the a? input. After that, Player 1 could choose the e! output (as a transition of 
Int1), and Player 2 (this time choosing a transition from IntA) has to cheat again. Player 2 thus has to cheat at every step. 
Interface Int2 (resp. Int3) improves on Int1 with respect to requirement IntA by adding inputs (resp. removing outputs). The 
distance from IntA to Int2 (or Int3) is exactly half of the distance from IntA to Int1. The interfaces Int2 and Int3 have distance 
0 to IntB. Int2 and Int3 satisfy the requirements IntA and IntB better than the interface Int1.

The model of behavioral interfaces we consider is a variant of interface automata [10]. This choice was made for ease 
of presentation of the main ideas of the paper. However, the definition of interface simulation distance can be extended to 
richer models.

We establish basic properties of the interface simulation distance. First, we show that the triangle inequality holds for 
the interface simulation distance. This, together with the fact that reflexivity holds for this distance as well, shows that it 
is a directed metric [13]. Second, we give an algorithm for calculating the distance. The interface simulation distance can 
be calculated by solving the value problem in the corresponding game, that is, in limit-average games or discounted-sum 
games. The values of such games can be computed in pseudo-polynomial time [23]. (More precisely, the complexity depends 
on the magnitude of the largest weight used in the error model. Thus the running time is exponential in the size of the 
input, if the weights are given in binary.)

We present composition and abstraction techniques that are useful for computing and approximating simulation dis-
tances between large systems. These properties suggest that the interface simulation distance provides an appropriate basis 
for a quantitative analysis of interfaces. The composition of interface automata, which also composes the assumptions on 
their environments, was defined in [10]. In this paper, we prove that the distance between two interfaces does not increase 
under the composition with a third interface. The technical challenges in the proof appear precisely because of the in-
volved definition of composition of interface automata, and are not present in the simpler setting closed systems of [5]. We 
also show that the distance between two interfaces can be over- or under-approximated by distances between abstractions 
of the two interfaces. For instance, for over-approximation, input transitions are abstracted universally, and output transi-
tions are abstracted existentially. Finally, we show how to synthesize an interface given a set of incompatible requirements. 
This situation often occurs when requirements are provided by different sources. We provide an algorithm that given the 
requirements constructs an ε-optimal implementation interface.

We illustrate the interface simulation distance, and in particular its behavior under interface composition, on two case 
studies. The first concerns a simple message transmission protocol over an unreliable medium. The second case study 
models error correcting codes.

Related work The alternating simulation preorder was defined in [1] in order to generalize the simulation preorder to in-
put/output systems. The alternating simulation can be checked in polynomial time, as is the case for the ordinary simulation 
relation. Interface automata have been defined in [10] to facilitate component-based design, and various techniques were 
proposed to handle real-time, resource-handling models, and modal systems [15,12,7,19]. Interface automata and related 



Download English Version:

https://daneshyari.com/en/article/436039

Download Persian Version:

https://daneshyari.com/article/436039

Daneshyari.com

https://daneshyari.com/en/article/436039
https://daneshyari.com/article/436039
https://daneshyari.com

