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We introduce a new symbolic representation of algorithmic game semantics, and show
how it can be applied for efficient verification of open (incomplete) programs. The focus is
on an Algol-like programming language which contains the core ingredients of imperative
and functional languages, especially on its second-order recursion-free fragment with
infinite data types. We revisit the regular-language representation of game semantics of
this language fragment. By using symbolic values instead of concrete ones, we generalize
the standard notions of regular-language and automata representations of game semantics
to those of corresponding symbolic representations. In this way programs with infinite
data types, such as integers, can be expressed as finite-state symbolic-automata although
the standard automata representation is infinite-state, i.e. the standard regular-language
representation has infinite summations. Moreover, in this way significant reductions of the
state space of game semantics models are obtained. This enables efficient verification of
programs by our prototype tool based on symbolic game models, which is illustrated with
several examples.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Game semantics [1,2,21] is a technique for compositional modelling of programming languages, which gives fully abstract
models. This means that the generated models are both sound and complete with respect to observational equivalence of
programs. In game semantics, types are interpreted by games (or arenas) between a Player, which represents the term being
modelled, and an Opponent, which represents the environment in which the term is used. The two participants strictly alter-
nate to make moves, each of which is either a question (a demand for information) or an answer (a supply of information).
Computations (executions of terms) are interpreted as plays of a game, while terms are expressed as strategies, i.e. sets of
plays, for a game. It has been shown that game semantics model can be given certain kinds of concrete automata-theoretic
representations [11,16,18], and so it can serve as a basis for software model checking and program analysis. Several features
of game semantics make it very promising for software model checking. The model is very precise and compositional, i.e.
generated inductively on the structure of programs, which is the key feature for achieving scalability. Also there exists a
model for any term-in-context (program fragment) with undefined identifiers, such as calls to library functions. However,
the main limitation of the model checking technique in general is that it can be applied only if a finite-state model is
available. In our case, this problem with infinite-state models arises when we want to handle terms with infinite data types.

Regular-language representation of game semantics of second-order recursion free Idealized Algol with finite data types
provides algorithms for automatic verification of a range of properties, such as observational-equivalence, approximation,
and safety. It has the disadvantage that in the presence of infinite integer data types the obtained automata become infinite
state, i.e. regular-languages have infinite summations, thus losing their algorithmic properties. Similarly, large finite data
types are likely to make the state-space of the obtained automata so big that it will be practically infeasible for automatic
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verification. For example, let us consider how we can model the successor function of type N → N. One characteristic play
in the strategy for this function looks like this:

succ : N〈1〉 ⇒ N
〈2〉

q O

q P

n O

n + 1 P

The play starts by Opponent (O ) asking for the value of output with the question move q, and Player (P ) responds by asking
for input. When Opponent provides an input n which can be any value from N, Player supplies n + 1 as output. The model
of the successor function consists of all possible plays of the above form. So, it is given by the following regular language:∑

n∈N(q〈2〉 · q〈1〉 · n〈1〉 · (n + 1)〈2〉), which has infinite summation when N is an infinite data type. Note that moves are tagged
with superscripts 〈1〉 and 〈2〉 to distinguish from which type component, input or output, they originate from.

In this paper we redefine the (standard) regular-language representation [16] at a more abstract level so that terms with
infinite data types can be represented as finite automata, and so various program properties can be checked over them. The
idea is to transfer attention from the standard form of automata to what we call symbolic automata. The representation of
values constitutes the main difference between these two formalisms. In symbolic automata, instead of assigning concrete
values to identifiers occurring in terms, they are left as symbols. Operations involving such identifiers will also be left as
symbols. Some of the symbols will be guarded by boolean expressions, which indicate under which conditions these sym-
bols can be performed. Also some of the words accepted by symbolic automata will be guarded by boolean expressions,
called conditions, which indicate whether a word is feasible or not. Infeasible words have inconsistent (unsatisfiable) con-
ditions, and we will use SMT solvers, such as Yices [15], to check consistency of these conditions. For example, symbolic
representation of the successor function will be given by the following word: q〈2〉 · q〈1〉 · ?Z 〈1〉 · (Z + 1)〈2〉 , where a new
symbol Z is used to encode the value of the input argument. This word is unguarded, i.e. its condition is ‘true’, and so it is
feasible.

This paper represents an extended and revised version of [13]. It is structured as follows. The language we consider here
is introduced in Section 2. Symbolic representation of algorithmic game semantics is defined in Section 3. Correctness of
the symbolic representation and its suitability for verification of safety properties are shown in Section 4. In Section 5 we
discuss some extensions of the language, such as arrays, and show how they can be represented in the symbolic model.
A prototype tool, which implements this translation, as well as some examples are described in Section 6. In Section 7, we
conclude and present some ideas for future work.

1.1. Related work

By representing game semantic models as symbolic automata, we obtain a predicate abstraction [19,8] alike method for
verification. In [3] it was also developed a predicate abstraction from game semantics. This was enabled by extending the
models produced using game semantics such that the state (store) is recorded explicitly in the model by using so-called
stateful plays. The state is then abstracted by a set of predicates giving rise to pa (predicate abstraction)-plays. However, in
our work we achieved predicate abstraction in a more natural way without changing the game semantic models, and also
for terms with infinite data types.

Symbolic techniques, in which data is not represented explicitly but symbolically, have found a number of applications
in theoretical computer science. Some interesting examples are symbolic execution and verification of programs [6], sym-
bolic program analysis [7,5], symbolic operational semantics of process algebras [20], parameterized verification of data
independent systems [23,24], etc.

SMT (Satisfiability Modulo Theories) [4] is concerned with checking the satisfiability of formulas with respect to some
background (first-order) theories, which fix interpretations of certain predicates and functions. In recent years, many pow-
erful SMT solvers have been developed in academia and industry. They have been successfully applied in many modern
program analysis and program verifications systems. For example, SMT solvers are used by interactive theorem provers, such
as Isabelle and PVS, software model checkers, such as SLAM and BLAST, static verifiers, such as Boogie and ESC/Java 2, etc.

2. The language

Idealized Algol (IA) [27] is a well studied language which combines call-by-name λ-calculus with the fundamental im-
perative features and locally-scoped variables. In this paper we work with its second-order recursion-free fragment (IA2 for
short).

The data types D are integers and booleans (D ::= int | bool). The base types B are expressions, commands, and variables
(B ::= exp D | com | var D). We consider only first-order function types T (T ::= B | B → T ).
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