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An independent dominating set of a graph G is a subset D of V such that every vertex 
not in D is adjacent to at least one vertex of D and no two vertices in D are adjacent. 
The independent dominating set (IDS) problem asks for an independent dominating set with 
minimum cardinality. First, we show that the independent dominating set problem and the 
dominating set problem on cubic bipartite graphs are both NP-complete. As an additional 
result, we give an alternative and more direct proof for the NP-completeness of both the 
independent dominating set problem and the dominating set problem on at-most-cubic 
grid graphs. Next, we show that there are fixed-parameter tractable algorithms for the 
independent dominating set problem and the dominating set problem on at-most-cubic 
graphs, which run in O (3.3028k + n) and O (4.2361k + n) time, respectively. Moreover, we 
consider the weighted independent dominating set problem on (k, �)-graphs. We show that 
the problem on (2, 1)-graphs is NP-complete. We also show that the problem can be solved 
in linear time for (1, 1)-graphs and in polynomial time for (1, �)-graphs for constant �, 
respectively.

© 2014 Published by Elsevier B.V.

1. Introduction

A dominating set of a graph G = (V , E) is a subset D of V such that every vertex not in D is adjacent to at least one 
vertex of D . An independent set of a graph G = (V , E) is a subset I of V such that no two vertices in I are adjacent. An 
independent dominating set of G is a subset of V which is both dominating and independent in G . Equivalently, an indepen-
dent dominating set is a maximal independent set. The dominating set (DS) problem asks for a dominating set with minimum 
cardinality and the independent dominating set (IDS) problem asks for an independent dominating set with minimum cardinal-
ity. The cardinalities of a minimum dominating set and a minimum independent dominating set are called the domination 
number and the independent domination number, respectively. Moreover, the weighted independent dominating set (WIDS) prob-
lem asks for an independent dominating set D of the given weighted graph such that its weight w(D) = ∑

v∈D w(v) is 
minimum.

A graph is bipartite if its vertex set can be partitioned into two independent sets. A graph is cubic if every vertex in the 
graph has degree three. A graph is at-most-cubic if the degrees of its vertices are all at most three. A graph is planar if it 
can be embedded in the plane (drawn with points for vertices and curves for edges) without edge-crossings. A graph is grid
if it is an induced subgraph of a grid. In the former part of this paper, we consider several classes of cubic or at-most-cubic 
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graphs. A (k, �)-graph is a graph such that its vertex set can be partitioned into at most k independent sets and � cliques. 
In the latter part of this paper, we turn to consider (k, �)-graphs, whose related work is introduced in Section 5.

First, we describe related work on the IDS problem. Garey and Johnson [16] first showed that the IDS problem for 
general graphs is NP-complete. Then, Corneil and Perl [10] showed that the IDS problem for bipartite graphs is NP-complete. 
Later, Clark et al. [9] showed that the IDS problem for grid graphs is NP-complete. In fact, they showed the IDS problem 
remains NP-complete when restricted to at-most-cubic grid graphs. Zverovich and Zverovich [26] further showed that the 
IDS problem is NP-complete for at-most-cubic planar bipartite graphs of minimum girth some fixed k, where the girth of 
a graph is the length of a shortest cycle contained in the graph. Moreover, Manlove [22] showed that the IDS problem for 
cubic planar graphs is NP-complete. Recently, Song et al. [25] showed that the IDS problem for star-convex bipartite graphs 
is NP-complete, and the IDS problem for triad-convex bipartite graphs can be solved in polynomial time. To the best of our 
knowledge, the IDS problem for cubic bipartite graphs was open. In this paper, we show that the IDS problem for cubic 
bipartite graphs is NP-complete. Moreover, via reduction from the rectilinear planar monotone 3SAT problem, we obtain an 
alternative but more direct proof for the NP-completeness of the IDS problem on at-most-cubic grid graphs.

Furthermore, we mention related work on the approximation results for the IDS problem. Irving [17] showed that the 
IDS problem for general graphs is not in APX unless P = NP. Then, Kann [18] showed that the IDS problem is APX-complete 
for graphs of maximum degree a constant B . Alimonti and Calamoneri [2] showed that there is an upper bound 2 for 
approximation ratio of the IDS problem on at-most-cubic graphs. Later, Chlebík and Chlebíková [8] showed that there is a 
lower bound 681

680 for approximation ratio of the IDS problem on at-most-cubic graphs.
Next, we describe related work on the DS problem. Garey and Johnson [16] showed that the DS problem for gen-

eral graphs is NP-complete. Also, in [16], they showed that the DS problems for both at-most-cubic planar graphs and 
4-regular planar graphs are NP-complete. Then, Kikuno et al. [19] showed that the DS problem for cubic planar graphs is 
NP-complete. Clark et al. [9] showed that the DS problem for at-most-cubic grid graphs is NP-complete. Moreover, Zverovich 
and Zverovich [26] showed that the DS problem is NP-complete for at-most-cubic planar bipartite graphs of minimum girth 
some fixed k. To the best of our knowledge, the DS problem for cubic bipartite graphs was open. In this paper, we show 
that the DS problem for cubic bipartite graphs is NP-complete. Moreover, via reduction from the rectilinear planar monotone 
3SAT problem, we obtain an alternative but more direct proof for the NP-completeness of the DS problem on at-most-cubic 
grid graphs.

Moreover, we mention related work on the approximation results for the DS problem. Lund and Yannakakis [21] showed 
that the DS problem for general graphs is not in APX unless P = NP. Baker [4] showed that there is a polynomial-time ap-
proximation scheme (PTAS) for the DS problem on planar graphs. Moreover, Papadimitriou and Yannakakis [23] showed that 
the DS problem for graphs of maximum degree a constant B is APX-complete. Kann [18] showed that the DS problem and 
the set cover problem are equivalent under L-reduction, which linearly preserves approximability features. Thus according 
to the result of Duh and Fürer [14] for the set cover problem, an upper bound 19

12 for approximation ratio of the DS problem 
on at-most-cubic graphs can be obtained. Later, Chlebík and Chlebíková [8] showed that there is a lower bound 391

390 for 
approximation ratio of the DS problem on at-most-cubic graphs.

A problem is fixed-parameter tractable (FPT) with respect to parameter k if there exists an algorithmic solution running in 
f (k) · nO (1) time, where f is a function of the solution size k which is independent of n, and the corresponding algorithm 
which contributes such a solution is called an FPT-algorithm. It is known that both the IDS and DS problems for general 
graphs are W[2]-hard [13]. Thus there are no FPT-algorithms that solve these two problems unless W [2] = FPT.

In the previous paragraphs, we have mentioned that the IDS problem [26] and the DS problem [19] for at-most-cubic 
graphs are both NP-complete. However, to the best of our knowledge, there was no FPT-algorithm specifically for at-most-
cubic graphs. At-most-cubic graphs is closely related to one of its superclasses called 3-degenerate graphs, where a graph 
G is d-degenerate if every subgraph of G has a vertex of degree at most d. From the FPT-algorithms for d-degenerate 
graphs [3], we first survey on the most efficient known FPT-algorithms for both problems on at-most-cubic graphs in the 
following paragraphs. Then, we will present more efficient FPT-algorithms for both problems in this paper.

Now we mention related work on the FPT-algorithms for d-degenerate graphs. Alon and Gutner [3] showed that there 
exists an FPT-algorithm for the DS problem on d-degenerate graphs in kO (dk) · n time. Followed by the above d-degenerate 
results for d = 3, there is an O (kO (3k) · n) algorithm for the DS problem on at-most-cubic graphs. Later, Cygan et al. [11]
showed that the IDS problem is fundamentally easier than the DS problem in d-degenerate graphs. It implies that there also 
exists an O (kO (3k) · n) algorithm for the IDS problem on at-most-cubic graphs.

Next, we need to further introduce a key preprocessing technique called kernelization for speeding the running time of 
FPT-algorithms. It is known that a parameterized problem is in FPT if and only if it has a kernel [13]. By using kernelizations, 
the input instance can be reduced to a smaller one, that is, a kernel, which depends only on the parameter. The first 
polynomial kernel result on the DS problem is presented by Alber et al. [1]; in fact, their result showed that the DS problem 
for planar graphs has a linear kernel. As for d-degenerate graphs, Alon and Gutner [3] showed that the DS problem has a 
kernel of size kO (dk) . Later, Philip et al. [24] improved the above kernel size to O (k2(d+1)2

). Moreover, a linear kernel of size 
4k can be easily obtained for at-most-cubic graphs. By combining the FPT-algorithm for 3-degenerate graphs with a kernel 
of size 4k, it is clear that there exist O ∗(kO (3k) · 4k) = O ∗(kO (3k)) algorithms for the IDS and DS problems on at-most-cubic 
graphs. Moreover, the brute-force method will give an O (24kk + n) = O (16kk + n) FPT-algorithm for both problems on 
at-most-cubic graphs. In this paper, we show that the IDS and DS problems on at-most-cubic graphs can be solved more 
efficiently, say in O (3.3028k + n) and O (4.2361k + n) time, respectively.
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