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We study the classic frequent items problem in data streams, but from a competitive 
analysis point of view. We consider the standard worst-case input model, as well as a 
weaker distributional adversarial setting. We are primarily interested in the single-slot 
memory case and for both models we give (asymptotically) tight bounds of Θ(

√
N) and 

Θ(
3
√

N) respectively, achieved by very simple and natural algorithms, where N is the 
stream’s length. We also provide lower bounds, for both models, in the more general case 
of arbitrary memory sizes of k ≥ 1

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The frequent items problem [2] is one of the most well-studied ones in the area of data streams [3–7]. Informally, the 
problem is that of observing a stream (sequence) of values and trying to discover those that appear most frequently. Many 
applications in packet routing, telecommunication logging and tracking keyword queries in search machines are critically 
based upon such routines.

More formally, in the most basic version of the classic frequent items problem, we are given a stream a1, a2, . . . , aN of 
items from some universe, as well as a frequency threshold φ, 0 < φ < 1, and we are asked to find and/or maintain all items 
that occur more than φN times throughout the stream. For real-life applications there are some restricting assumptions the 
algorithms need to respect: the size N of the stream, as well as the rate at which the items arrive, far exceed the computa-
tional capabilities of our devices. Consequently, we usually require streaming algorithms to use O (polylog(N)) memory and 
allow approximate solutions within a factor of ε (additive, with respect to φ), since exact solutions would require linear 
space [2], a totally unrealistic option in some domains. Furthermore, we are usually interested in algorithms that make as 
few passes as possible over the input stream and, in particular, single-pass algorithms that process the input stream in an 
online way, i.e. each item sequentially, making decisions on-the-fly.

So, traditionally data stream problems have been essentially approached as space complexity optimization problems: 
given an input stream and an approximation guarantee of ε , we try to minimize the memory used (see, e.g., the seminal 
work of [8]). However, despite their intrinsic online nature, these problems have not been studied within the predominant 
framework for studying online problems, i.e. that of competitive analysis [9].
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Only recently, Becchetti and Koutsoupias [10] did that, using competitive analysis to study another important streaming 
problem, namely that of maintaining the maximum value within a sliding window [11]. Following a similar approach, we 
formulate an online version of the classic frequent items problem: given an input stream and a memory of at most k slots, 
try to optimize the online algorithm’s performance with respect to that of an optimal offline algorithm that knows the 
entire input stream in advance. This is, in a way, the inverse of the traditional space complexity optimization objective men-
tioned above. We also use a similar aggregate-through-time perspective (instead of an unrealistic optimization-at-every-step 
requirement) upon defining our objective function (see Section 1.1). As argued in [10], the competitive analysis approach 
combined with an aggregate objective, seem more appropriate for economic applications as well as a decision-making under 
uncertainty framework.

1.1. Setting

We are observing a stream A = a1, a2, . . . , aN of N elements drawn from some universe U , in a sequential, online fashion. 
It is natural to assume that |U | � N . We consider algorithms that, at every time step t = 1, 2, . . . , N , maintain in memory 
a set St(A) ⊆ {a1, a2, . . . , at} of at most k items from the part of the input stream A observed so far.1 Furthermore, we 
assume that the only way in which our algorithms can update these memory sets throughout the execution, is to make 
an irrevocable decision, at every time point t , of whether or not to store the newly arrived element at in memory, i.e. 
St ⊆ St−1 ∪ {at}. An online algorithm can base its decision just2 on the knowledge of its current memory state St−1 and the 
current time point t , while an offline algorithm can have access to the entire input stream A. Notice that, since |St | ≤ k, 
if at some point t we want to store a new element at /∈ St−1, then we may need to discard some previously stored item 
a j ∈ St−1, j < t and then St ⊆ {at} ∪ St−1 \ {a j}. For the special case of k = 1, which will be our main concern in this paper 
for the most part (we will consider general memory sizes of k ≥ 1 again in Section 4) we will denote by st the unique item 
in the algorithm’s memory at time point t , i.e. St = {st}.

Given an input stream A and an element a ∈ A we define its frequency as f A(a) = nA(a)
N , where nA(a) = |{i | ai = a}| is the 

number of instances of a in the stream.3 Intuitively, we want our algorithms, at every time, to maintain the most frequent 
items possible. We formalize this, by defining the aggregate frequency objective as the sum, across the entire execution, of 
the frequencies of all distinct items in memory, i.e. 

∑N
t=1

∑
a∈St

f (a). Notice here a fine point: we treat St as a set and not
as a multi-set, i.e. multiple occurrences of the same element in memory can only contribute once towards our objective. We 
measure an online algorithm’s performance on a given input A by comparing its total gain (i.e. the value of the aggregate 
frequency objective on stream A) to that of an offline algorithm that knows the entire input stream A in advance. The 
competitive ratio of the online algorithm is the maximum value of this ratio among all possible inputs,

max
A

∑N
t=1

∑
a∈S ′

t
f A(a)∑N

t=1
∑

a∈St
f A(a)

,

where St , S ′
t are the memory sets of the online and optimal offline algorithm, respectively. The competitive ratio for our 

online frequent items problem, is the best (minimum) competitive ratio we can achieve over all online algorithms.
Finally, whenever we deal with randomized algorithms in this paper, we are always silently assuming the standard, 

oblivious adversary [12,9] model, i.e. the adversary decides an input A knowing the online algorithm but not the actual 
results of its coin tosses.

1.2. Organization of the paper and results

In this paper we are mostly interested in the special case of single-slot memories (k = 1). That is the case for Sections 2
and 3. We do not deal with general memory sizes of k ≥ 1 until Section 4.

In Section 2, we prove that the competitive ratio of the online frequent items problem is Θ(
√

N), by providing a lower 
bound proof of 1

3

√
N and showing that the most simple algorithm that myopically accepts every element that arrives 

achieves an (asymptotically) tight 
√

N competitive ratio. Furthermore, in Section 2.1, we show that the well known Majority 
algorithm for the classical frequent items problem performs very poorly from a competitive analysis point of view, since it 
has (asymptotically) the worst possible competitive ratio an online algorithm can demonstrate, namely Θ(N).

Also, we consider weaker adversarial inputs and in particular the case of the input stream being generated i.i.d. from 
a probability distribution, known only to the adversary. In Section 3 we show how a very simple and natural algorithm, 
called Eager, that essentially waits until it sees some element appearing twice, achieves a competitive ratio of O (

3
√

N), 
asymptotically matching a lower bound of Ω(

3
√

N) again providing a tight competitive ratio (of Θ(
3
√

N)) for the case of 
k = 1.

1 To keep notation light, we will simply use St instead of St (A) whenever it is clear to which input stream we are referring to.
2 In a different online setting, we could have also assumed that the online algorithm has complete knowledge of the past. This, though, seems as a rather 

unrealistic assumption to make, especially in a streaming setting.
3 Again, we will drop the superscript A whenever this causes no confusion.
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