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An (n, k, r)-network is a triple N = (G, in, out) where G = (V , E) is a graph and in, out are 
non-negative integer functions defined on V called the input and output functions, such 
that for any v ∈ V , in(v) + out(v) + deg(v) ≤ 2r where deg(v) is the degree of v in the 
graph G . The total number of inputs is in(V ) = ∑

v∈V in(v) = n, and the total number of 
outputs is out(V ) = ∑

v∈V out(v) = n + k.
An (n, k, r)-network is valid, if for any faulty output function out′ (that is such that 0 ≤
out′(v) ≤ out(v) for any v ∈ V , and out′(V ) = n), there are n edge-disjoint paths in G such 
that each vertex v ∈ V is the initial vertex of in(v) paths and the terminal vertex of out′(v)

paths.
We investigate the design problem of determining the minimum number N (n, k, r) of 
vertices in a valid (n, k, r)-network and of constructing minimum (n, k, r)-networks, or at 
least valid (n, k, r)-networks with a number of vertices close to the optimal value.
We first give some upper bounds on N (n, k, r). We show N (n, k, r) ≤ � k+2

2r−2 �� n
2 �. When 

r ≥ k/2, we prove a better upper bound: N (n, k, r) ≤ r−2+k/2
r2−2r+k/2

n + O (1).

Next, we establish some lower bounds. We show that if k ≥ r, then N (n, k, r) ≥ 3n+k
2r . We 

improve this bound when k ≥ 2r: N (n, k, r) ≥ 3n+2k/3−r/2
2r−2+ 3r

	 k
r 


.

Finally, we determine N (n, k, r) up to additive constants for k ≤ 6.
© 2014 Published by Elsevier B.V.

1. Introduction

The design of modern telecommunication satellites is complex, and an important industrial priority is to provide robust-
ness at the lowest possible cost. Alcatel Space Industries is a major manufacturer of telecommunication satellites. A key 
component of their satellites is an interconnection network which redirects signals received by the satellite to a set of am-
plifiers implanted in the satellite, from where the signals are then retransmitted (a detailed overview of the model and its 
motivations can be found in [5,2]). Because of its reliability, wave guide technology was chosen by Alcatel Space Industries to 
build these on-board networks (for background information see [7,11]). Such interconnection networks consist of expensive 
four-port switches, of wave guides linking these switches, of inputs (where the signals enter the network) and of outputs 
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Fig. 1. A first solution: the network N1.

(where the signals leave the network). Before being retransmitted, the signals must be amplified, so the outputs are ampli-
fiers based on Travelling Wave Tube Amplifier technology [7,11]. However, amplifiers are prone to failure. While switches 
are also prone to failure, wave guide technology ensures that the probability of a switch developing a fault is much smaller 
than the probability of a fault arising in an amplifier. For this reason, only faults in amplifiers are considered in models [2]. 
Many techniques have been proposed to increase the reliability and fault-tolerance of multistage interconnection networks 
or switching networks (see [1,10,6]). These techniques only consider networks whose switches (or whose links between 
switches) are subject to failure. They do not consider faulty outputs. These works focused on aspects such as deadlock and 
adaptive routing schemes, aspects that are not relevant to our problem.

In this paper, following [2,4,9], we focus on designing networks that are capable, in the presence of faulty output ports, 
of rerouting input signals to operational output ports. Since the components of a satellite cannot be repaired, redundant 
amplifiers are added, and the interconnection network satisfies the following fault tolerance property: the network connects 
the set of input ports with the set of output ports, and for any set of at most k output port failures, there exists a set of 
edge-disjoint paths connecting the input ports to the operational output ports. Since each switching device is expensive, 
these interconnection networks are constructed using the fewest possible switches, or at least a number of switches close 
to the minimum value. The networks are controlled centrally from Earth. Each time an amplifier in use develops a fault, 
the controller sends messages to the switches to change their settings, so as to ensure that the inputs remain connected to 
functioning amplifiers. Variants of the problem have been considered in which there are two kinds of input, the aim being 
to guarantee a certain quality of service [3,9]. They will not be considered in this paper.

Current switches have four ports. The problem was initially studied for such switches in [2] (k ≤ 4 failures), and then in 
[4] (up to 12 failures). For this, the cheapest type of switch, all wave guides are drawn in the plane and due to technological 
constraints, may not cross. For four-port switches, this was not problematic since there is a 2-dimensional switch which is 
as powerful as the one realizing all possible matchings of ports (see [2]). However, for a larger number of ports, the types 
of switches that can be built in the plane under this non-crossing constraint are not very powerful and do not allow the 
construction of networks with few switches. For this reason, in this paper we seek to design on-board networks with more 
powerful switches, that is, 3-dimensional switches with more than four ports. In practice, such a switch will be expensive. 
Hence less powerful but cheaper switches are also envisioned. For the sake of simplicity, we consider here a basic model in 
which every switch has 2r ports and can realize all matchings among them. The aim is to provide elements to determine 
the number of ports minimizing the cost of the network (this will depend on the cost of construction of 2r-port switches). 
Obviously, the larger the number of ports, the more expensive will be the switches, but then fewer will be required. So the 
cost of such a network involves a trade-off between the total number of switches and their unit cost. In this paper, we give 
some bounds on the minimum number of 2r-port switches in interconnection networks with n inputs and n + k outputs.

Generalizing the definition of (n, k)-networks introduced in [2,4], we define (n, k, r)-networks as follows: An (n, k, r)-net-
work is a triple N = (G, in, out) where G = (V , E) is a graph (where each vertex is a switch) and in, out are non-negative 
integer functions defined on V called input and output functions, such that for any v ∈ V , its number of ports por(v) de-
fined by por(v) = in(v) + out(v) + deg(v) is at most 2r. (deg(v) denotes the degree of v in the graph G , that is the number 
of edges of G incident to v .) Let i and o be two non-negative integers. An (i|o)-switch is a switch s with i inputs and o
outputs, i.e. with in(s) = i and out(s) = o. The total number of inputs is in(V ) = ∑

v∈V in(v) = n and the total number of 
outputs is out(V ) = ∑

v∈V out(v) = n + k.
Any integer function out′ defined on V such that 0 ≤ out′(v) ≤ out(v) for any v ∈ V , and out′(V ) = n is called a faulty 

output function. Note that out(v) − out′(v) is the number of faults at vertex v . An (n, k, r)-network is valid, if for any faulty 
output function out′ , there are n edge-disjoint paths in G such that each vertex v ∈ V is the initial vertex of in(v) paths 
and the terminal vertex of out′(v) paths.

Let us denote the minimum number of vertices in a valid (n, k, r)-network by N (n, k, r). A valid (n, k, r)-network with 
exactly N (n, k, r) vertices is called a minimum (n, k, r)-network. The design problem consists of determining N (n, k, r) and 
of constructing minimum (n, k, r)-networks, or at least valid (n, k, r)-networks with a number of vertices (i.e. switches) close 
to the optimal value.

Let us present an example: We would like to construct valid (4, 4, 2)-networks. A first solution is depicted in Fig. 1. 
The network N1 is composed of eight switches ui , vi for 1 ≤ i ≤ 4. The associated graph G = (V , E) is the 4 × 2 grid. 
The input and output functions are defined as follows: in(vi) = 1, in(ui) = 0 for 1 ≤ i ≤ 4, and out(v2) = out(v3) = 0, 
out(v1) = out(u2) = out(u3) = out(v4) = 1, out(u1) = out(u4) = 2.

For any faulty output function out′ , it is easy to see that there are four edge-disjoint paths in G such that each vertex 
v ∈ V is the initial vertex of in(v) paths and the terminal vertex of out′(v) paths. This implies that this network is valid. It 
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