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The main contribution of this work is to propose a primal–dual combinatorial 3(1 + ε)-ap-
proximation algorithm for the two-level facility location problem (2-LFLP) by explor-
ing the approximation oracle concept. This result improves the previous primal–dual 
6-approximation algorithm for the multilevel facility location problem, and also matches 
the previous primal–dual approximation ratio for the single-level facility location problem. 
One of the major merits of primal–dual type algorithms is their easy adaption to other 
variants of the facility location problems. As a demonstration, our primal–dual approxima-
tion algorithm can be easily adapted to several variants of the 2-LFLP, including models 
with stochastic scenario, dynamically arrived demands, and linear facility cost.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Facility location problems have been extensively studied in the operation research and computer science communities 
due to their vast applications. In the classical single-level facility location problem (1-LFLP), there are a set of facilities and a set 
of clients. Our objective is to open a subset of facilities and connect every client to an open facility such that the total cost 
of opening facilities and connecting clients is minimized. In the k-level facility location problem (k-LFLP), the facilities form 
a hierarchy of k levels, and a facility path consists of exactly one facility from each level in the hierarchical order from the 
lowest to the highest level. The objective is to open k subsets of facilities in each level and connect every client to an open 
path (a facility path consisting of only open facilities) such that the total cost of opening facilities and connecting clients 
is minimized. Throughout this paper, we assume that the connection costs are metric, that is, nonnegative, symmetric, and 
satisfying the triangle inequality.

It is well-known that the k-LFLP for any k ≥ 1 is NP-hard and hence approximation algorithms have been one of the 
important methods in solving this problem. However, it was known that one cannot have an approximation ratio smaller 
than 1.463 for the 1-LFLP unless P = NP [13,23], smaller than 1.539 for the 2-LFLP, and smaller than 1.61 for the general 
k-LFLP unless NP ⊆ DTIME(nO (log log n)) [16].

On the positive side, there exist many constant approximation algorithms in the literature. For the 1-LFLP, the first con-
stant 3.16-approximation algorithm is due to Shmoys et al. [21], followed by many improvements over the years [4,6,9,14,
15,19,24], with the currently best approximation ratio 1.488 by Li [17]. For the 2-LFLP, Zhang [29] gives a dual-fitting based 
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(but non-combinatorial) approximation algorithm with the currently best ratio 1.77(1 +ε)2 by using a combination of quasi-
greedy and LP-rounding techniques, while the best combinatorial approximation ratio 2.4211 is due to Ageev et al. [2]. The 
best approximation for the k-LFLP, for any constant k ≥ 3, is given by Byrka and Rybicki [5]. For the general k-LFLP, Ageev 
et al. [2] give a 3.27-approximation algorithm which is the currently best combinatorial approximation algorithm, while 
both Aardal et al. [1] and Gabor and van Ommeren [11] give the currently best non-combinatorial approximation ratio of 3
based on LP-rounding techniques, where the former is based on an LP formulation with an exponential number of variables, 
and the latter is based on a compact LP formulation with polynomial number of decision variables. Moreover, Bumb and 
Kern [3] give a primal–dual combinatorial 6-approximation algorithm which generalizes the primal–dual approach of Jain 
and Vazirani [15].

1.1. Problem description

The focus of this work is on the 2-LFLP, which can be formally described as follows. Given two level sets of facilities F1
and F2 and a set of clients D, there are facility open costs f i and fk for opening facilities i ∈ F2 and k ∈ F1, respectively; 
and there are connection costs cik between i ∈ F2 and k ∈ F1, and ckj between k ∈ F1 and j ∈ D, respectively. We need 
to open some facilities in F1 and F2 to compose some open paths, and connect each client to an open path such that the 
facility (opening) cost and connection cost is minimized. For convenience, we introduce the following notations:

cikj := cik + ckj, ∀i ∈ F2, k ∈ F1, j ∈ D;
CiS D := f i +

∑
k∈S

fk +
∑
j∈D

min
k∈S

cikj, ∀i ∈ F2, S ⊆ F1, D ⊆ D.

Since there always exists an optimal solution that is a forest for the 2-LFLP [10], we can formulate the 2-LFLP as the 
following binary integer linear program.

min
∑
i∈F2

∑
S⊆F1

∑
D⊆D

CiS D XiS D

s.t.
∑
i∈F2

∑
S⊆F1

∑
D⊆D: j∈D

XiS D ≥ 1, ∀ j ∈ D,

XiS D ∈ {0,1}, ∀i ∈ F2, S ⊆ F1, D ⊆ D. (1.1)

By relaxing the integrality constraints, we get the linear program relaxation, whose dual program is as follows.

max
∑
j∈D

α j

s.t.
∑
j∈D

α j ≤ CiS D , ∀i ∈ F2, S ⊆ F1, D ⊆ D,

α j ≥ 0, ∀ j ∈ D. (1.2)

1.2. Our results and techniques

One key component in the standard primal–dual algorithm [15] is to identify the time at which one of the dual con-
straints becomes tight whenever the dual variables are updated. This identification problem, a.k.a separation problem in the 
literature [12], for the dual LP (1.2) for the 1-LFLP is easily solvable in polynomial-time, in contrast to the situation for the 
2-LFLP, where we are facing the Max-1-LFLP, an NP-hard problem. One possible way to overcome this difficulty is to approx-
imately solve the separation problem, e.g., using the technique in [29]. Unfortunately a straightforward combination of the 
primal–dual algorithm [15] with the quasi-greedy approach [29] is not possible. The main reason is that the latter approach 
in [29] is only applicable in the primal-greedy (or the dual-fitting) setting [14] where dual feasibility is not required. On 
the other hand what we really need here is a ‘dual’ version of the quasi-greedy approach (details in Section 3.1), in order 
to be integrated with dual-greedy type of approaches such as the primal–dual method [15], where dual feasibility must be 
respected throughout the algorithm.

Using an analog in the classical set covering problem, the aforementioned primal- and dual-greedy approaches lead to 
approximation ratios ln(n) and f , respectively, where n is the size of the ground set and f is the maximum frequency of 
elements. For details on the set covering problem, the readers are referred to [26]: Chapters 2 and 15, in which the more 
popular terms greedy algorithm and primal–dual algorithm are used, respectively.

The main result of this work is to obtain a primal–dual combinatorial 3(1 + ε)-approximation algorithm, improving the 
previous primal–dual 6-approximation algorithm for the k-LFLP of Bumb and Kern [3], and also matching the previous 
primal–dual approximation ratio for the 1-LFLP of Jain and Vazirani [15]. Furthermore, by exploring the so-called Add

operation in [29], we can improve the ratio from 3(1 + ε) to 2.172(1 + ε)2.
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