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We investigate dynamic algorithms for the interval scheduling problem. We focus on the 
case when the set of intervals is monotonic. This is when no interval properly contains 
another interval. We provide two data structures for representing the intervals that allow 
efficient insertion, removal and various query operations. The first dynamic algorithm, 
based on the data structure called compatibility forest, runs in amortised time O (log2 n)

for insertion and removal and O (logn) for query. The second dynamic algorithm, based 
on the data structure called linearised tree, runs in time O (logn) for insertion, removal 
and query. We discuss differences and similarities of these two data structures through 
theoretical and experimental results.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Imagine a number of processes that need to use a particular resource for a period of time. Each process i specifies 
a starting time s(i) and a finishing time f (i) between which it needs to continuously occupy the resource. The resource 
cannot be shared by two processes at any instance. One is required to design a scheduler which chooses a subset of these 
processes so that 1) there is no time conflict between processes in using the resource, and 2) there are as many processes 
as possible that get chosen.

The above is a typical set-up for the interval scheduling problem, one of the basic problems in the study of algorithms. 
Formally, given a collection of intervals on the real line all specified by starting and finishing times, the problem asks 
for a subset of maximal size consisting of pairwise non-overlapping intervals. The interval scheduling problem and its 
variants appear in a wide range of areas in computer science and applications such as in logistics, telecommunication, and 
manufacturing. They form an important class of scheduling problems and have been studied under various names and with 
application-specific constraints [11].

The interval scheduling problem, as stated above, can be solved by a greedy scheduler as follows [10]. The scheduler 
sorts intervals based on their finishing time, and then iteratively selects the interval with the least finishing time that is 
compatible with the intervals that have already been scheduled. The set of intervals chosen in this manner is guaranteed to 
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have maximal size. This algorithm works in a static context in the sense that the set of intervals is given a priori and it is 
not subject to change.

In a dynamic context the instance of the interval scheduling problem is usually changed by a real-time events, and a 
previously optimal schedule may become not optimal. Examples of such real-time events include job cancellation, arrival of 
an urgent job, change in job processing time. To avoid the repetitive work of rerunning the static algorithm every time when 
the problem instance has changed, there is a demand for efficient dynamic algorithms for solving the scheduling problem 
on the changed instances. In this dynamic context, the set of intervals changes through a number of update operations such 
as insertion or removal. Our goal is to design data structures that allow us to solve the interval scheduling problem in a 
dynamic setting. The results of this paper have been partially exposed in [5].

In our effort to dynamise the interval scheduling problem, we focus on a special class of interval sets which we call 
monotonic interval sets. In monotonic interval sets no interval is properly contained by another interval. Considering mono-
tonic intervals is a natural setting for the problem. For example, if all processes require the same amount of time to be 
completed, then the set of intervals is monotonic. Moreover, monotonic interval sets are closely related to proper interval 
graphs. An interval graph is an undirected graph whose nodes are intervals and two nodes are adjacent if the two corre-
sponding intervals overlap. A proper interval graph is an interval graph for a monotonic set of intervals. There exist linear 
time algorithms for representing a proper interval graph by a monotonic set of intervals [1,8,3]. Furthermore, solving the 
interval scheduling problem for monotonic intervals corresponds to finding a maximal independent set in a proper interval 
graph.

Related work. On a somewhat related work, S. Fung, C. Poon and F. Zheng [4] investigated an online version of interval 
scheduling problem for weighted intervals with equal length (hence, the intervals are monotonic), and designed randomised 
algorithms. We also mention that R. Lipton and A. Tompkins [7] initiated the study of online version of the interval schedul-
ing problem. In this version a set of intervals are presented to a scheduler in order of start time. Upon seeing each interval 
the algorithm must decide whether to include the interval into the schedule.

A related problem on a set of intervals I asks to find a minimal set of points S such that every interval from I intersects 
with at least one point from S . Such a set S is called a piercing set of I . A dynamic algorithm for maintaining a minimal 
piercing set S is studied in [6]. The dynamic algorithm runs in time O (|S| log |I|). We remark here that if one has a maximal 
set J of disjoint intervals in I , one can use J to find a minimal piercing set of I , where each point in the piercing set 
corresponds to the finishing time of an interval in J in time O (| J |). Therefore our dynamic algorithm can be adapted to 
one that maintains a minimal piercing set. Our algorithm improves the results in [6] when the interval set I is monotonic.

Kaplan et al. in [9] studied a problem of maintaining a set of nested intervals with priorities. The problem asks for an 
algorithm that given a point p finds the interval with maximal priority containing p. Similarly to our dynamic algorithm, 
the solution in [9] also uses dynamic trees to represent a set of intervals.

Our results. We provide two dynamic algorithms for solving the interval scheduling problem on monotonic set of intervals. 
Both algorithms allow efficient insertion, removal and query operation. Formal explanation is in the next sections.

The first algorithm maintains the compatibility forest data structure and is denoted by CF. We call the right compatible 
interval of a given interval i the interval j such that f (i) < s( j) and there does not exist an interval � such that f (i) < s(�)
and f (�) < f ( j). The CF data structure maintains the right compatible interval relation. The implementation of the data 
structure utilises, nontrivially, the dynamic tree data structure of Sleator and Tarjan [12]. As a result, in Theorem 6 of 
Section 3 we prove that the insert and remove operations take amortised time O (log2 n) and the query operation takes 
amortised time O (log n).

The second dynamic algorithm maintains the linearised tree data structure and is denoted by LT. We say that intervals 
are equivalent if their right compatible intervals coincide. The LT data structure maintains both the right compatibility 
relation and the equivalence relation. Then, in Theorem 15 of Section 4 we prove that the insertion, removal and query 
operations take time amortised O (log n). However, this comes with a cost. As opposed to the CF data structure that keeps a 
representation of an optimal set after each update operation, the linearised tree data structure does not explicitly represent 
the optimal solution.

To test the performance of our algorithms, we carried out experiments on random sequences of update and query 
operations. The experiments show that the two data structures CF and LT perform similarly. The reason for this is that 
the first dynamic algorithm based on CF reaches the bound of log2 n only on specific sequences of operations, while on 
uniformly random sequences the algorithm may run much faster. Both algorithms outperform the modified naive algorithm 
(described in Section 2).

Organisation of the paper. Section 2 introduces the problem, monotonic interval sets and the modified naive dynamic 
algorithm. Sections 3 and 4 describe the CF and LT data structures and present our dynamic algorithms. Section 5 extends 
the data structures by adding the report operation that outputs the full greedy solution. Section 6 discusses the experiments.

2. Preliminaries

An interval is a pair (s(i), f (i)) ∈ R
2 with s(i) < f (i), where s(i) is the starting time and f (i) is the finishing time of 

the interval. We abuse notation and write i for the interval (s(i), f (i)). We say that an interval x contains an interval y if 
s(x) < s(y) and f (x) > f (y). Sometimes we look at an interval i as a set of real numbers between s(i) and f (i). Then we 
talk about the left and the right endpoints of an interval and denote x contains y as x ⊃ y.
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