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This is the first paper of a group of three where we prove the following result. Let A be an 
alphabet of t letters and let ψ : A∗ −→ N

t be the corresponding Parikh morphism. Given 
two languages L1, L2 ⊆ A∗, we say that L1 is commutatively equivalent to L2 if there exists 
a bijection f : L1 −→ L2 from L1 onto L2 such that, for every u ∈ L1, ψ(u) = ψ( f (u)). Then 
every bounded context-free language is commutatively equivalent to a regular language.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we study an algebraic and combinatorial problem concerning bounded context-free languages. A strictly 
related notion is that of sparse language: a language L is termed sparse if its counting function, that is, the function f L that 
maps every integer n ≥ 0 into the number f L(n) of words of L of length n, is polynomially upper bounded. Sparse languages 
play a meaningful role both in Computer Science and in Mathematics and have been widely investigated in the past. The 
interest in this class of languages is due to the fact that, in the context-free case, it coincides with the one of bounded 
languages. A language L is termed bounded if there exist k words u1, . . . , uk such that L ⊆ u∗

1 · · · u∗
k ([3,5,6,14,16–20,22,23,25]; 

see also [11] for an excellent survey on the relationships between bounded languages and monoids of polynomial growth).
The starting point of this investigation is the following result proved in [5]: for every sparse context-free language L1, 

there exists a regular language L2 such that f L1 = f L2 .
Therefore, the counting function of a sparse context-free language is always rational. This result is interesting since, as it 

is well known [13], the counting function of a context-free language may be transcendental.
A conceptual limit of the above-mentioned construction is that the regular language L2 is on a different alphabet from 

the one of L1. Therefore it is natural to ask whether this limitation can be removed. It is worth noticing that, from a general 
point of view, imposing restrictions on the alphabets makes some classical constructions more difficult but obviously more 
informative. In this context, as a related result, we can mention a remarkable contribution by Beal and Perrin where the 
problem of the length equivalence of regular languages on alphabets of prescribed size is considered [1].

Let us now describe the problem we are interested in. For this purpose, some preliminary notions are needed. Let A =
{a1, . . . , at} be an alphabet of t letters and let ψ : A∗ −→ Nt be the corresponding Parikh morphism. Given two languages
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L1 and L2 over the alphabet A, we say that L1 is commutatively equivalent to L2 if there exists a bijection f : L1 −→ L2 from 
L1 onto L2 such that, for every u ∈ L1, ψ(u) = ψ( f (u)). This notion is important in the theory of variable-length codes since 
it is involved in the celebrated Schützenberger conjecture about the commutative equivalence of a maximal finite code with 
a prefix one (see e.g. [2]).

Now the general problem above can be formulated as follows: given a bounded context-free language L1 , does it exist a 
regular language L2 which is commutatively equivalent to L1?
In the sequel, for short, we refer to it as CE (Commutative Equivalence) Problem.

This is the first paper of a group of three (see also [9,10]) where we prove the following statement that solves in the 
affirmative the CE Problem.

Theorem 1. Every bounded context-free language L1 is commutatively equivalent to a regular language L2. Moreover the language L2
can be effectively constructed starting from an effective presentation of L1.

Theorem 1 with a sketch of the proof was announced in [7]. Actually we prove that the CE problem can be solved in 
the affirmative for the wider class of bounded semi-linear languages. Moreover the use of such languages turns out to be 
of crucial importance in the solution of the problem as it makes possible to handle the languages through suitable sets of 
vectors of integers, namely semi-linear sets of the free commutative monoid Nk .

Observe that the CE Problem can be seen as a kind of counting problem in the class of bounded context-free languages. 
Despite the fact that such class has been widely investigated in the past, CE Problem appears to require some new tech-
niques. Indeed, bounded context-free languages can be inherently ambiguous; in addition, if u∗

1 · · · u∗
k , ui ∈ A+ , is the set 

that contains the bounded context-free language, then, in general, u∗
1 · · · u∗

k is ambiguous as product of languages of A∗ . 
Such ambiguities, which are of different nature, interfere making the study of the problem a non-trivial task.

Before explaining the main contribution of this paper, we would like to give a broader picture about the relationships 
between CE Problem and some classical theorems on bounded context-free languages. The first result that deserves to be 
mentioned is a well-known theorem by Parikh [24]. For this purpose, let us first introduce a notion. Given two languages 
L1 and L2 over the alphabet A, we say that L1 is Parikh equivalent to L2 if ψ(L1) = ψ(L2). The theorem by Parikh states 
that, given a context-free language L1, its image ψ(L1) under the Parikh map is a semi-linear set of Nt . As a straightforward
consequence of Parikh theorem, one has that there exists a regular language L2 which is Parikh equivalent to L1.

It is worth noticing that the property of Parikh equivalence by no means implies the property of commutative equiva-
lence. Indeed, let A = {a, b} and let L1 = (ab)∗ ∪ (ba)∗ and L2 = (ab)∗ . One has that ψ(L1) = ψ(L2) = (1, 1)⊕ (the symbol 
⊕ denotes the Kleene star operation in the monoid N2) so that L1 is Parikh equivalent to L2. On the other hand, one 
immediately checks that L1 cannot be commutatively equivalent to L2.

Another theorem that is central in this context has been proved by Ginsburg and Spanier [15]. For this purpose, let 
us first introduce a notion. Let L ⊆ u∗

1 · · · u∗
k be a bounded language where, for every i = 1, . . . , k, ui is a word over the 

alphabet A. Let ϕ : Nk −→ u∗
1 · · · u∗

k be the map defined as: for every tuple (�1, . . . , �k) ∈Nk ,

ϕ(�1, . . . , �k) = u�1
1 · · · u�k

k .

The map ϕ is called the Ginsburg map. Ginsburg and Spanier proved that L is context-free if and only if ϕ−1(L) is a finite 
union of linear sets, each having a stratified set of periods. Roughly speaking, a stratified set of periods corresponds to a 
system of well-formed parentheses. However, Ginsburg and Spanier theorem is of no help to study counting problems and, 
in particular, our problem, because of the ambiguity of the representation of such languages. Indeed, let A = {a, b, c} be a 
three letter-alphabet and let the language L = {aib jck | i, j, k ∈ N, i = j or j = k} [4]. Since L is inherently ambiguous, by 
[14] Theorem 6.2.1, L cannot be represented unambiguously as a finite disjoint union of a stratified set of periods. In this 
context, another important recent result that gives a characterization of bounded context-free languages in terms of finite 
unions of Dyck loops has been proven in [20]. However, neither this latter result can be used to deal with our problem 
because of the ambiguity of the representation of such languages as a finite union of Dyck loops.

The proof of Theorem 1 will be presented in its complete generality in [10]. In particular, we will prove Theorem 1, by 
using a refined version of the techniques of this paper together with another result proved in [9].

The goal of this paper is to describe some key elements of our technique. We will do this by proving Theorem 1 under 
the following assumption.

Let L = ϕ(B) be a language described, via the Ginsburg map, by a semi-simple set B:

B =
n⋃

i=0

Bi, n ≥ 1,

where B0 is a finite set of vectors and, for every i = 1, . . . , n, Bi is a simple set:

Bi = b(i)
0 + {

b(i)
1 , . . . ,b(i)

ki

}⊕
,

where ki > 0 is the dimension of Bi and the vectors b(i)
0 , b(i)

1 , . . . , b(i)
ki

, form the unambiguous representation of Bi .
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