
Theoretical Computer Science 562 (2015) 365–376

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Approximation algorithms for digraph width parameters ✩

Shiva Kintali a, Nishad Kothari b,∗, Akash Kumar c

a Department of Computer Science, Princeton University, NJ, USA
b Department of Combinatorics and Optimization, University of Waterloo, ON, Canada
c Department of Computer Science, Purdue University, IN, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 December 2012
Received in revised form 18 May 2014
Accepted 1 October 2014
Available online 13 October 2014
Communicated by G. Ausiello

Keywords:
Approximation algorithms
Arboreal decomposition
Directed treewidth
DAG-decomposition
DAG-width
Directed path decomposition
Directed pathwidth
Kelly decomposition
Kelly-width
Directed vertex separators

Several problems that are NP-hard on general graphs are efficiently solvable on graphs with 
bounded treewidth. Efforts have been made to generalize treewidth and the related notion 
of pathwidth to digraphs. Directed treewidth, DAG-width and Kelly-width are some such 
notions which generalize treewidth, whereas directed pathwidth generalizes pathwidth. 
Each of these digraph width measures have an associated decomposition structure.
In this paper, we present approximation algorithms for all these digraph width parameters. 
In particular, we give an O (

√
log n)-approximation algorithm for directed treewidth, and an 

O (log3/2 n)-approximation algorithm for directed pathwidth, DAG-width and Kelly-width. 
Our algorithms construct the corresponding decompositions whose widths agree with the 
above mentioned approximation factors.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The related notions of tree decompositions and path decompositions have been studied extensively by Robertson and 
Seymour in their seminal work on graph minors. These decompositions correspond to associated width measures for undi-
rected graphs called treewidth and pathwidth, respectively. Besides playing a crucial role in structural graph theory, these 
width measures also proved to be very useful in the design of algorithms. Roughly speaking, treewidth of an undirected 
graph measures how close the graph is to being a tree. On the other hand, pathwidth measures how close the graph 
is to being a path. Several problems that are NP-hard on general graphs are solvable in polynomial time on graphs of 
bounded treewidth using dynamic programming techniques. These include classical problems such as Hamiltonian cycle, 
graph coloring, vertex cover, graph isomorphism and many more. We refer the reader to [19,10] and references therein for 
an introduction to treewidth.

One attempt at solving algorithmic problems on digraphs would be to consider the treewidth of the underlying undi-
rected graph. However, this approach suffers from certain drawbacks if the problem being considered depends on the 
directions of the arcs. For instance, it is possible to orient the edges of a complete graph in order to obtain a directed 

✩ This work was done when the authors were at Georgia Institute of Technology, Atlanta, GA, USA.

* Corresponding author.
E-mail addresses: kintali@cs.princeton.edu (S. Kintali), nkothari@uwaterloo.ca (N. Kothari), akumar@purdue.edu (A. Kumar).

http://dx.doi.org/10.1016/j.tcs.2014.10.009
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.10.009
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:kintali@cs.princeton.edu
mailto:nkothari@uwaterloo.ca
mailto:akumar@purdue.edu
http://dx.doi.org/10.1016/j.tcs.2014.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.10.009&domain=pdf


366 S. Kintali et al. / Theoretical Computer Science 562 (2015) 365–376

acyclic graph (DAG). Although the (undirected) treewidth of such a digraph is large, it is easy to solve the Hamiltonian cycle 
problem on such a digraph. Thus, it would be desirable to have a width measure for digraphs which would attain much 
lower values on such digraphs than the value of the (undirected) treewidth. Hence, efforts have been made to generalize 
treewidth and pathwidth to digraphs. Directed treewidth, DAG-width and Kelly-width are some such notions which general-
ize treewidth, whereas directed pathwidth generalizes pathwidth. Each of these digraph width measures have an associated 
decomposition structure as well.

Johnson et al. [18] introduced the first directed analogue of treewidth called directed treewidth. They demonstrated the 
algorithmic benefits of directed treewidth by providing efficient algorithms for NP-hard problems (such as Hamiltonian cy-
cle) on digraphs of bounded directed treewidth. Reed [26] defined another directed analogue which is closely related to the 
one introduced by Johnson et al. Later on, Berwanger et al. [7] and independently Obdržálek [24] introduced DAG-width. 
They demonstrated the usefulness of DAG-width by showing that the winner of a parity game can be decided in polyno-
mial time on digraphs of bounded DAG-width. Parity games are a certain form of combinatorial game played on digraphs. 
They also give an equivalent characterization of DAG-width in terms of a certain variant of the cops-and-robber game in 
which the robber is visible and dynamic. More recently, Hunter and Kreutzer [17] introduced Kelly-width. They presented 
several equivalent characterizations of Kelly-width such as elimination ordering, partial k-DAGs and another variant of the 
cops-and-robber game in which the robber is invisible and inert. We refer the reader to Appendix A for a discussion of 
cops-and-robber games.

All of the above mentioned width measures are generalizations of undirected treewidth. More precisely, for a graph G
with treewidth k, let G be the digraph obtained from G by replacing each edge {u, v} of G by two arcs (u, v) and (v, u), 
then: (i) the directed treewidth of G is equal to k [18, Theorem 2.1], (ii) the DAG-width of G is equal to k +1 [7, Proposition 
5.2], and, (iii) the Kelly-width of G is equal to k + 1 [17]. Similarly, directed pathwidth introduced by Reed, Seymour and 
Thomas is a generalization of undirected pathwidth [5, Lemma 1]. Computing the treewidth (or pathwidth) of an undirected 
graph is NP-complete [2]. Moreover, Bodlaender et al. [8, Theorem 23] showed that unless P = NP, neither treewidth nor 
pathwidth can be approximated within an additive constant or term of the form nε for ε < 1 of optimal. It follows that 
computing any of these digraph width parameters is also NP-complete, and futhermore a similar approximation hardness 
applies.

All the algorithms proposed for approximating treewidth rely on the relation between treewidth and balanced vertex 
separators (which we discuss in more detail shortly). In their seminal work, Leighton and Rao [23] gave an O (log n)-pseudo 
approximation algorithm for computing balanced vertex separators. Bodlaender et al. [8] gave an O (log n)-approximation 
algorithm for computing treewidth. Their algorithm made use of the small vertex separators obtained using the results 
of [23]. Moreover, their techniques imply that any ρ-approximation algorithm for balanced vertex separators can be used 
to obtain a ρ-approximation algorithm for treewidth. Now, let k denote the treewidth of a graph. Bouchitté et al. [9]
gave an O (log k)-approximation algorithm for treewidth using different techniques. Independently, Amir [3] gave another 
approximation algorithm with the same guarantee for treewidth, and this again relies on the algorithms of [23].

The approximation algorithm for balanced vertex separators was improved to O (
√

log k) by Feige, Hajiaghayi and Lee 
[13]. As per the above discussion and as noted by Feige et al. [13], this gives an O (

√
log k)-approximation algorithm for 

treewidth. Kloks [19] described a procedure to transform a tree decomposition to a path decomposition whose width is 
at most log n times the width of the original tree decomposition. It follows that the result of Feige et al. [13] implies an 
O (

√
log k · log n)-approximation algorithm for pathwidth.

To the best of our knowledge, no (non-trivial) approximation algorithms are known for any of the above mentioned di-
graph width parameters. We take a step in this direction. Our algorithms are similar to the above mentioned approximation 
algorithms for treewidth in the sense that they rely on the approximation algorithms for balanced directed vertex separa-
tors (see Definition 13). Leighton and Rao [23] observed that their algorithm can be extended to work on directed graphs 
as well. This leads to an O (log n)-approximation algorithm for balanced directed vertex separators using the algorithm for 
directed edge separators as a black box. This was further improved to O (

√
log n) by Agarwal et al. [1]. Our algorithms make 

use of their approximation algorithm as a subroutine.

1.1. Results and techniques

• We obtain an O (log3/2 n)-approximation algorithm for directed pathwidth. This algorithm uses ideas similar to those 
of Bodlaender et al. [8] for approximating treewidth and pathwidth, which in turn builds on techniques developed by 
Lagergren [21] and Reed [25]. Let G be an undirected graph. Informally speaking, a balanced vertex separator is a set 
of vertices S ⊆ V (G) such that V (G) − S can be divided into two parts of roughly the same size. Their algorithm at 
a high level uses a divide-and-conquer approach to compute approximate path decompositions of the graphs induced 
by these two parts, and then uses these to construct an approximate path decomposition of G . We refer the reader to 
[19, Section 6.1] for a detailed description of this algorithm. The approximation guarantee of their algorithm crucially 
depends on the fact that every graph of treewidth k has a balanced vertex separator of size at most k + 1. We first 
establish analogous relations between balanced directed vertex separators (see Definition 13) and all of the relevant 
digraph width parameters, and then use a similar divide-and-conquer approach to compute an approximate directed 
path decomposition.



Download English Version:

https://daneshyari.com/en/article/436148

Download Persian Version:

https://daneshyari.com/article/436148

Daneshyari.com

https://daneshyari.com/en/article/436148
https://daneshyari.com/article/436148
https://daneshyari.com

