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In a STACS 2003 paper, Talwar analyzes the overpayment the VCG mechanism incurs for 
ensuring truthfulness in auctions. Among other results, he studies k-Set Cover (given a 
universe U and a collection of sets S1, S2, . . . , Sm , each having a cost c(Si) and at most 
k elements of U , find a minimum cost subcollection – a cover – whose union equals 
U ) and shows that the payment of the VCG mechanism is at most k · c(OPT ′), where 
OPT ′ is the best cover disjoint from the optimum cover OPT . The VCG mechanism 
requires finding an optimum cover. For k ≥ 3, k-Set Cover is known to be NP-hard, 
and thus truthful mechanisms based on approximation algorithms are desirable. We 
show that the payment incurred by two mechanisms based on approximation algorithms 
(including the Greedy algorithm) is bounded by (k − 1)c(OPT ) + k · c(OPT ′). The same 
approximation algorithms have payment bounded by k(c(OPT) + c(OPT ′)) when applied to 
more general set systems, which include k-Polymatroid Cover, a problem related to Steiner 
Tree computations. If q is such that an element in a k-Set Cover instance appears in at 
most q sets, we show that the total payment based on our algorithms is bounded by q · k2

times the total payment of the VCG mechanism.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

There has been a surge of recent interest in the intersection area of economic sciences and computer science (see [41] for 
a survey). Inside this area is the field of mechanism design, which we describe below in the particular setting we are going to 
analyze in this paper. The seminal paper of Nisan and Ronen [40] introduced the computational issues of mechanism design 
and gives a general overview in a setting more general than ours. A reader with economics background will recognize the 
scenario in our simplified case. A reader with computer science background will find below all the definitions used in this 
paper, and is warned that more definitions and notations are required in the general setting.

We are given a ground set E �= ∅ of elements and a family F �= ∅ of feasible subsets of E , together comprising a set 
system. We consider only the case when the set system (E, F) is closed upwards, which means that for any J ∈ F and 
any superset J ′ : J ⊆ J ′ ⊆ E , we have J ′ ∈F . This assumption is valid in certain circumstances, as in [46,3,20] and specific 
examples are given later in this paper. Each element e ∈ E is controlled by a different selfish (economic) agent, which we 
call the agent of e. The agent of e has a private (unknown to anyone else) cost c(e) ≥ 0 for providing e to a feasible subset. 
We consider only single parameter agents – their only parameter being the cost. Finding feasible subsets is sometimes called 
team selection in the literature [3,20] dealing with mechanisms.

✩ An extended abstract appeared in Proc. ISAAC 2004.
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A direct revelation mechanism is a protocol which asks each agent to provide a bid b(e) (giving an |E|-dimensional vec-
tor b), and then computes a feasible subset N = N(b) and a payment function p(e, b) ≥ 0. If e ∈ N , the agent of e must 
allow e to be used by N in exchange for the payment p(e, b).

The agents are selfish and could misrepresent their cost in order to increase their payments. The field of mechanism 
design deals with the design of protocols which ensure the designer’s goals are achieved by giving incentives to agents. The 
revelation principle [44,38] states that in order to prove or disprove the existence of a “good” (as defined in [44] – meaning 
it satisfies certain desirable properties which we do not mention) mechanism for a given problem, one can consider only 
truthful direct revelation mechanism. Thus we only use direct revelation mechanisms, which are fully characterized by the 
computation of the feasible subset N and the payment function p.

In our context, the economics notion of maximizing social welfare is minimizing the cost of N [40]. Minimizing the cost 
of N could be the goal of the designer of the mechanism. Another reasonable goal is minimizing the sum of payments. 
A mechanism is called truthful (also called strategy-proof) if every agent has as her best interest to bid her cost (by setting 
b(e) = c(e)) regardless of the other agents’ bids.

Consider the simple case in which each one-element subset of E is feasible, a situation which occurs frequently in real 
life. Say the government needs a task to be performed and invites sealed bids from agents (contractors). If the government 
chooses the lowest bidder and pays to this agent her bid, then the agents may bid higher than their cost with the goal of 
making a profit. The government can however use the VCG mechanism [47,16,27]: select the lowest bidder and pay her an 
amount equal to the second lowest bid. Assuming agents don’t collude, it can be shown that in this case each agent has 
as her best interest to make a bid equal to her cost. The VCG mechanism is truthful, and minimizes cost (maximizes social 
welfare). However the payment may be much larger than the cost.

The VCG mechanism can be applied to our upwards closed set system setting as well [46,3,6], and selfish agents would 
bid their cost: for all e, we have b(e) = c(e). The mechanism selects OPT, a feasible subset of minimum cost, and computes 
payments with a formula we present later.

The upwards closed set systems we consider are instances of problems. For example, the elements can be the edges of 
a graph and feasible subsets consist of connected spanning subgraphs: the Minimum Spanning Tree problem. Of particular 
interest in routing protocols is the Shortest s–t Path problem [3,20].

Define p(I, Mec) to be the total payment of truthful mechanism Mec on the instance I , that is the sum of the payments 
given by the mechanism to the agents. Note that, since the mechanism is truthful and the agents are assumed to be 
acting in their own interest, the bids b(e) are equal to costs c(e) and thus the payment is a function of the instance, for a 
given mechanism. Talwar [46] analyzes the frugality ratio of problems, which is defined as the maximum over instances I
of p(I, VCG)/c(OPT ′(I)), where OPT′(I) is the best feasible subset disjoint from OPT for instance I . [46] characterizes the 
problems with frugality ratio 1. For example, Minimum Spanning Tree has frugality ratio 1 [6,23,46], and Shortest s–t Path 
has frugality ratio Θ(n) [3,46], where n is the number of vertices in the graph.

One interesting problem analyzed by Talwar [46] is the k-Set Cover problem: given a universe U and a collection of 
sets S1, S2, . . . , Sm , each having a cost c(Si) and at most k elements of U , find a minimum cost subcollection (called cover) 
whose union equals U . k-Set Cover fits the general framework as follows: each set Si is an element of E , and covers are 
the feasible subsets. [46] has proved that the frugality ratio of k-Set Cover is exactly k. Thus for k-Set Cover, the mechanism 
VCG, besides optimizing the cost (social welfare), guarantees a bound on the payment.

For k ≥ 3, k-Set Cover is known to be NP-hard, and thus truthful mechanisms based on approximation algorithms are 
desirable. Lehmann et al. [34] prove and [3,1] mention that it is known that a direct revelation mechanism with single 
parameter agents is truthful if it is based on a monotone algorithm (we define later monotone algorithms, and how mech-
anisms are based on such algorithms); we call such a mechanism monotone. For k-Set Cover, we analyze two monotone 
mechanisms based on approximation algorithms: the mechanism Greedy based on the Greedy algorithm, and the WOG
mechanism based on the Worst-Out-Greedy algorithm (defined later). For both mechanisms we show that their payment 
is bounded by (k − 1)c(OPT ) + k · c(OPT ′). This bound is at most twice worse than the bound of the VCG mechanism, 
which must find the optimum solution. For the mechanism WOG, we construct instances where our bound on the payment 
is tight. We present an instance of k-Set Cover where the payments of both mechanisms WOG and Greedy are lower than 
the payment of mechanism VCG.

We call (k, q)-Set Cover the Set Cover problem where each set has size at most k and every element appears in at 
most q sets. We prove that for all (k, q)-Set Cover instances I , we have p(I, Greedy) ≤ k2 ·q · p(I, VCG) and p(I, WOG) ≤ k2 ·q ·
p(I, VCG). The (k, q)-Set Cover problem is the only problem in our setting we are aware of where there is a nontrivial bound 
on the ratio of the payment of an approximation algorithm to the payment of the exact algorithm. Previous approximate 
truthful mechanisms [1,2] either are for maximization problems and look at revenue (instead of payment) or look at a 
different setting in which costs are public and the agents have some other private data.

In the k-Polymatroid Cover problem, the upwards closed set system is defined by a monotone submodular rank function 
r : P(E) → N with r(e) ≤ k for all e ∈ E: a feasible set J is a set satisfying r( J ) = r(E). The k-Polymatroid Cover problem 
is related to the full-component approach for Steiner Tree computation [42,50,5,45,43,9], and is a generalization of k-Set 
Cover. The k-Polymatroid Cover problem is NP-hard for k ≥ 3, polynomial for k = 1 (when the problem becomes finding a 
minimum-cost basis in a matroid), while the complexity for k = 2 is unknown, but pseudopolynomial algorithms are known 
for linear polymatroids [10,42]. Wolsey [49] has shown that the greedy algorithm for k-Polymatroid Cover has approximation 
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