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We prove the first logarithmic lower bounds for the approximability of the Minimum 
Dominating Set problem for the case of connected (α, β)-power law graphs for α being 
a size parameter and β the power law exponent. We give also a best up to now upper 
approximation bound for this problem in the case of the parameters β > 2. We develop 
also a new functional method for proving lower approximation bounds and display a sharp 
approximation phase transition area between approximability and inapproximability of the 
underlying problems. Our results depend on a method which could be also of independent 
interest.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The Minimum Dominating Set problem (Min-DS) asks for a minimum size set of vertices D for a given graph G such 
that each vertex in G is either contained in D or adjacent to some vertex in D . The Min-DS problem has asymptotically the 
same approximation upper and lower bounds as the Set Cover problem. It can be approximated within (1 − o(1)) ln(n) by 
a greedy algorithm and, unless NP ⊆ DTIME(nO (log log n)), there is no (1 − ε) ln(n)-approximation algorithm for Min-DS for 
any ε > 0 [8]. Furthermore, Raz and Safra established an approximation lower bound of c · ln(n) for some constant c under 
the weaker assumption that P �= NP [20].

In this paper we give new approximation upper and lower bounds for Min-DS on power law graphs. G is called a power 
law graph if the number of nodes of degree i is proportional to i−β , for some β > 0. The parameter β is called the power law 
exponent and determines the log–log growth rate of G . The Min-DS problem on power law graphs was originally introduced 
in the context of the sensor placement problems in massive social networks (cf. [7]).

Power law graphs (PLG) have been used in modeling and analyzing the real-world networks like the graphs of the 
Internet and the World Wide Web (WWW), peer-to-peer networks, mobile call networks, protein–protein interaction net-
works, gene regulatory networks, food webs and various social networks. Typically, the power law exponent of these 
real-world networks lies within the range 2 < β < 3 (e.g. β = 2.38 for the WWW [5], β = 2.4 for protein–protein inter-
action networks [13]). There also exist examples of real-world networks with a power law exponent β ≤ 2 or β ≥ 3, e.g. 
for distributional food webs (β = 1.05, [18]), statistical investigations of book sales in the US (β = 3.51, [12,19]) and human 
contact networks (β = 3.4, [17]).
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Table 1
Summary of the main results: approximation lower bounds and approximation up-
per bounds for Min-DS on (α, β)-PLG for certain ranges of the parameter β . The 
precise choice of the parameter d is described in Theorem 4.

Power law exponent Approx. lower bound

0 < β < 1 Ω(ln(n) − ln( 1
1−β

))

β = 1 Ω(ln(n))

1 < β < 2 Ω(ln(n) − ln(ζ(β)))

β = 2 Ω(ln(n) − ln(ζ(β)))

β = 2 + 1
f (n)

, f (n) = ω(log n) Ω(ln(n) − ln(ζ(β)))

Power law exponent Approx. upper bound

β = 2 + 1
f (n)

, f (n) = o(log n) APX

2 < β ≤ 2.729 ζ(β)−1
ζ(β)−∑d−1

j=1 j−β

β > 2.729 ζ(β−1)−2ζ(β)
ζ(β−1)−2

A number of different random graph models were proposed in order to capture the topological properties of real-world 
networks and to analyze these graphs on the basis of a so called null-model (see [1–4,6,15,16]). On this basis, two different 
types of models have been introduced. The evolving models define a random process where one node at a time is added 
and connected to the existing graph in a random fashion—and thus are aiming to describe how power laws arise. The static 
models start from a given power law degree sequence as an input and then perform a random selection from the space 
of graphs with this degree sequence. The most prominent examples of the two types are the preferential attachment model
described by Barabási [3], and the ACL model introduced by Aiello, Chung, and Lu [1,2].

In this paper, we consider the power law model (α, β)-PLG due to [1] (also called the ACL model). A (multi-)graph G with 
maximum degree � is called an (α, β)-PLG with size parameter α and a power law exponent β , if for each i ≤ � = �eα/β�, 
the number of nodes of degree i is equal to �eα/iβ�.

2. Previous results

Ferrante, Pandurangan, and Park [9] have shown the NP-hardness of Min-DS on simple disconnected (α, β)-PLG for 
β > 0. In [21] it was shown that Min-DS on (α, β)-PLG is in APX for β > 2. Furthermore, for β > 1, APX-hardness was 
shown and explicit constant approximation lower bounds were given, namely 1 + 1

390(2ζ(β)3β−1)
on (α, β)-PLG multigraphs 

and 1 + 1
3120ζ(β)3β on simple (α, β)-PLG.

Eubank et al. [7] studied a relaxed version of Min-DS: In the (1 − ε)-Min-DS problem the requirement is to dominate 
at least a (1 − ε)-fraction of the vertices. They show that for every ε > 0, the (1 − ε)-Min-DS problem on bipartite random
PLG admits a PTAS.

3. Our results

In this paper, we give the first logarithmic lower approximation bounds for Min-DS on (α, β)-PLG for the case β ≤ 2. 
The best up to now approximation lower bound was a constant bound [21]. We show that in this case, unless NP ⊆
DTIME(nO (log log n)), Min-DS on connected (α, β)-PLG cannot be approximated within an approximation ratio Ω(ln(n)). Thus 
our lower approximation bound is almost tight. We also give improved approximation upper bounds for the case β > 2 and 
show that in this case, Min-DS on (α, β)-PLG can be approximated within some constant approximation ratio Rβ which 
converges to 1 as β → ∞.

Then we take a very precise look at the phase transition point at β = 2. We consider a case when β = 2 + 1/ f (n) is 
a function of the size n of the graph. Here, n denotes the number of vertices of the PLG, and f is a monotone increasing 
unbounded function. This is an extension of the (α, β)-PLG model in [1], for which β was always a fixed constant. Surpris-
ingly, we obtain a very sharp phase transition result, between approximability and inapproximability areas depending on 
the order of magnitude of the function f . We show that when f (n) = o(log n), Min-DS on (α, 2 + 1/ f (n))-PLG is still in 
APX. On the other hand, we give a logarithmic approximation lower bound for the case when f (n) = ω(log n).

Our approximation lower bounds are based on a direct approximate reduction from the Set Cover problem to the Min-DS

problem combined with an embedding of the resulting graph instances into (α, β)-PLG. Our constructions rely on precise 
estimates of sizes of node intervals in (α, β)-PLG and on the available node degree inside these intervals. Table 1 summa-
rizes our main results in lower and upper approximation bounds for Min-DS on (α, β)-PLG.

4. Organization of the paper

In Section 5, we are giving an outline of the proof methods and the simulating constructions on which our reductions 
are based. In Section 6, we use the original reduction of Feige [8] from 5Occ-Max-E3-Sat (5 Occurrence Maximum E3-Sat) 
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