
Theoretical Computer Science 549 (2014) 1–16

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Algorithmic introduction of quantified cuts ✩

Stefan Hetzl a, Alexander Leitsch b, Giselle Reis b, Daniel Weller a,∗
a Institute of Discrete Mathematics and Geometry, Vienna University of Technology, Vienna, Austria
b Institute of Computer Languages, Vienna University of Technology, Vienna, Austria

a r t i c l e i n f o a b s t r a c t

Article history:
Received 23 January 2013
Received in revised form 15 May 2014
Accepted 27 May 2014
Available online 2 June 2014
Communicated by A. Avron

Keywords:
Proof compression
Cut-introduction
Classical logic
First-order logic

We describe a method for inverting Gentzen’s cut-elimination in classical first-order logic. 
Our algorithm is based on first computing a compressed representation of the terms 
present in the cut-free proof and then cut-formulas that realize such a compression. 
Finally, a proof using these cut-formulas is constructed. Concerning asymptotic complexity, 
this method allows an exponential compression of quantifier complexity (the number of 
quantifier-inferences) of proofs.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Cut-elimination introduced by Gentzen [15] is the most prominent form of proof transformation in logic and plays 
an important role in automating the analysis of mathematical proofs. The removal of cuts corresponds to the elimination 
of intermediate statements (lemmas), resulting in a proof which is analytic in the sense that all statements in the proof 
are subformulas of the result. Thus a proof of a combinatorial statement is converted into a purely combinatorial proof. 
Cut-elimination is therefore an essential tool for the analysis of proofs, especially to make implicit parameters explicit.

In this paper we present a method for inverting Gentzen’s cut-elimination by computing a proof with cut from a given 
cut-free proof as input. As cut-elimination is the backbone of proof theory, there is considerable proof-theoretic interest and 
challenge in understanding this transformation sufficiently well to be able to invert it. But our interest in cut-introduction 
is not only of a purely theoretical nature. Proofs with cuts have properties that are essential for applications: on the one 
hand, cuts are indispensable for formalizing proofs in a human-readable way. One the other hand cuts have a very strong 
compression power in terms of proof length.

Computer-generated proofs are typically analytic, i.e. they only contain logical material that also appears in the the-
orem shown. This is due to the fact that analytic proof systems have a considerably smaller search space which makes 
proof-search practically feasible. In the case of the sequent calculus, proof-search procedures typically work on the cut-free 
fragment. But also resolution is essentially analytic as resolution proofs satisfy the subformula property of first-order logic. 
An important property of non-analytic proofs is their considerably smaller length. The exact difference depends on the 
logic (or theory) under consideration, but it is typically enormous. In (classical and intuitionistic) first-order logic there are 
proofs with cut of length n whose theorems have only cut-free proofs of length 2n (where 20 = 1 and 2n+1 = 22n ) (see [36]

✩ This work was supported by the projects P22028-N13, I603-N18 and P25160-N25 of the Austrian Science Fund (FWF), by the ERC Advanced Grant 
ProofCert and the WWTF Vienna Research Group 12-04.

* Corresponding author.
E-mail addresses: stefan.hetzl@tuwien.ac.at (S. Hetzl), leitsch@logic.at (A. Leitsch), giselle@logic.at (G. Reis), weller@logic.at (D. Weller).

http://dx.doi.org/10.1016/j.tcs.2014.05.018
0304-3975/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.tcs.2014.05.018
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:stefan.hetzl@tuwien.ac.at
mailto:leitsch@logic.at
mailto:giselle@logic.at
mailto:weller@logic.at
http://dx.doi.org/10.1016/j.tcs.2014.05.018
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2014.05.018&domain=pdf


2 S. Hetzl et al. / Theoretical Computer Science 549 (2014) 1–16

and [31]). The length of a proof plays an important role in many situations such as human readability, space requirements 
and time requirements for proof checking. For most of these situations general-purpose data compression methods cannot 
be used as the compressed representation would need to be uncompressed for checking proof theoretical properties. It is 
therefore of high practical interest to develop proof-search methods which produce non-analytic and hence potentially much 
shorter proofs. In the method presented in this paper we start with a cut-free proof and abbreviate it by computing useful 
cuts based on a structural analysis of the cut-free proof.

There is another, more theoretical, motivation for introducing cuts which derives from the foundations of mathematics: 
most of the central mathematical notions have developed from the observation that many proofs share common structures 
and steps of reasoning. Encapsulating those leads to a new abstract notion, like that of a group or a vector space. Such a 
notion then builds the base for a whole new theory whose importance stems from the pervasiveness of its basic notions in 
mathematics. From a logical point of view this corresponds to the introduction of cuts into an existing proof database. While 
we cannot claim to contribute much to the understanding of such complex historical processes by the current technical state 
of the art, this second motivation is still worthwhile to keep in mind, if only to remind us that we are dealing with a difficult 
problem here.

Gentzen’s method of cut-elimination is based on reductions of cut-derivations (subproofs ending in a cut), transforming 
them into simpler ones; basically the cut is replaced by one or more cuts with lower logical complexity. A naive reversal 
of this procedure is infeasible as it would lead to a search tree which is exponentially branching on some nodes and 
infinitely branching on others. Therefore we base our procedure on a deeper proof-theoretic analysis: in the construction 
of a Herbrand sequent S ′ corresponding to a cut-free proof ϕ′ (see e.g. [3]) obtained by cut-elimination on a proof ϕ of 
a sequent S with cuts, only the substitutions generated by cut-elimination on quantified cuts are relevant. In fact, it is 
shown in [18] that, for proofs with Σ1 and Π1-cuts only, S ′ can be obtained just by computing the substitutions defined by 
cut-elimination without applying Gentzen’s procedure as a whole. Via the cuts in the proof ϕ one can define a tree grammar 
generating a language consisting exactly of the terms (to be instantiated for quantified variables in S) for obtaining the 
Herbrand sequent S ′ [18]. Hence, generating a tree grammar G from a set of Herbrand terms T (generating T ) corresponds 
to an inversion of the quantifier part of Gentzen’s procedure. The computation of such an inversion forms the basis of the 
method of cut-introduction presented in this paper. Such an inversion of the quantifier part of cut-elimination determines 
which instances of the cut-formulas are used but it does not determine the cut-formulas. In fact, a priori it is not clear 
that every such grammar can be realized by actual cut-formulas. However, we could show that, for any such tree grammar 
representing the quantifier part of potential cut-formulas, actual cut-formulas can be constructed. Finally, a proof containing 
these cut-formulas can be constructed.

Work on cut-introduction can be found at a number of different places in the literature. Closest to our work are other 
approaches which aim to abbreviate or structure a given input proof : [41] is an algorithm for the introduction of atomic 
cuts that is capable of exponential proof compression. The method [13] for propositional logic is shown to never increase 
the size of proofs more than polynomially. Another approach to the compression of first-order proofs by introduction of 
definitions for abbreviating terms is [40].

Viewed from a broader perspective, this paper should be considered part of a large body of work on the generation 
of non-analytic formulas that has been carried out by numerous researchers in various communities. Methods for lemma 
generation are of crucial importance in inductive theorem proving which frequently requires generalization [7], see e.g. [25]
for a method in the context of rippling [8] which is based on failed proof attempts. In automated theory formation [9,10], 
an eager approach to lemma generation is adopted. This work has, for example, led to automated classification results 
of isomorphism classes [34] and isotopy classes [35] in finite algebra. See also [28] for an approach to inductive theory 
formation. In pure proof theory, an important related topic is Kreisel’s conjecture (see footnote 3 on page 400 of [38]) on 
the generalization of proofs. Based on methods developed in this tradition, [4] describes an approach to cut-introduction 
by filling a proof skeleton, i.e. an abstract proof structure, obtained by an inversion of Gentzen’s procedure with formulas 
in order to obtain a proof with cuts. The use of cuts for structuring and abbreviating proofs is also of relevance in logic 
programming: [30] shows how to use focusing in order to avoid proving atomic subgoals twice, resulting in a proof with 
atomic cuts.

This paper is organized as follows:
In Section 3 we define Herbrand sequents and extended Herbrand sequents which represent proofs with cut. The concept 

of rigid acyclic regular tree grammars is applied to establish a relation between an extended Herbrand sequent S∗ and a 
(corresponding) Herbrand sequent S ′: the language defined by this grammar is just the set of terms T to be instantiated for 
quantifiers in the original sequent S to obtain S ′ . Given such a grammar G generating T there exists a so-called schematic 
extended Herbrand sequent Ŝ in which the (unknown) cut-formulas are represented by monadic second-order variables. It is 
proved that Ŝ always has a solution, the canonical solution. From this solution, which gives an extended Herbrand sequent 
and the cut-formulas for a proof, the actual proof with these cuts is constructed.

To make the underlying methods more transparent, Section 3 deals only with end-sequents of the form ∀x F →. In 
Section 4 the method is generalized to sequents of the form

∀x̄1 F1, . . . ,∀x̄n Fn → ∃ ȳ1G1, . . . ,∃ ȳmGm



Download English Version:

https://daneshyari.com/en/article/436171

Download Persian Version:

https://daneshyari.com/article/436171

Daneshyari.com

https://daneshyari.com/en/article/436171
https://daneshyari.com/article/436171
https://daneshyari.com

