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The conditional diagnosability of interconnection networks has been studied by using a 
number of ad-hoc methods. Recently, gathering various ad-hoc methods developed in the 
last decade, a unified approach was developed, and this approach was used to find the 
conditional diagnosability of many interconnection networks. In this paper, we study the 
conditional diagnosability of matching composition networks, including those that are not 
triangle-free.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Thanks to constant technological progress, multiprocessor systems with ever increasing number of interconnected com-
puting nodes are becoming a reality. To address the reliability concern of such a system, it is ideal, and technically feasible, 
to have a self-diagnosable system where the computing nodes are able to detect faulty ones by themselves in the form of a 
diagnosis. One major approach to this regard is called the comparison diagnosis model [20,21], where each node performs a 
diagnosis by sending the same input to all pairs of its distinct neighbors and then comparing their responses. Based on such 
comparison results made by all the processors, the faulty status of the system can be decided. The number of detectable 
faulty nodes in such a multiprocessor system certainly depends on the topology of its associated interprocessor structure, 
as well as the modeling assumptions, and the maximum number of detectable faulty nodes in such a network is called its 
diagnosability. Such a measurement directly characterizes the fault-tolerance ability of an interconnection network and is 
thus of great interest [10,11,18,19,23,32].

When all the neighbors of some processor in a network are faulty simultaneously, it is impossible to determine the faulty 
status of this processor, as well as that of the whole system. Hence, the unrestricted diagnosability of a network, when 
represented with a graph G , is limited by the minimum degree of G , often too small thus unsatisfying. On the other hand, 
with the often made statistical assumption of independent and identical distribution (i.i.d.) of failures among processors, it 
is simply unlikely that all the neighbors of a certain processor will fail at the same time, hence the notion of conditional 
diagnosability was introduced in [18] which assumes that no conditional faulty set contains all the neighbors of any processor. 
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This more realistic notion leads to an improved characterization of a network’s fault-tolerance properties, and has since been 
identified for several networks, including hypercubes [16], k-ary n-cubes [13], folded hypercubes [14,24], augmented cubes 
[9,24], Cayley graphs generated by transposition trees [19], alternating group networks [32], BC Networks [15], pancake 
graphs [24], and (n, k)-star graphs [8], all under the above comparison diagnosis model. Much work has also been done 
under another diagnostic model, the PMC model [22] (with recent papers [3,4,12,33]), where diagnosis is made by testing 
adjacent nodes. Although it is pointed out in [23] that the comparison model generalizes the PMC model, diagnosability 
results achieved under the comparison model are often as large as those achieved under the PMC model. Initially, ad-hoc 
methods were used in determining the conditional diagnosability as in [18,19,31–33]. This topic has been slowly converging 
to a general scheme as developed in [8,9], and further solidified in [7].

The class of bijective connection networks (BC networks) is defined recursively as follows: Let H1 = {K2} and for i ≥ 2, let Hi

be the set of all graphs that can be constructed by taking two (possibly the same) elements H1 = (V 1, E1) and H2 = (V 2, E2)

from Hi−1 (if we take the same element, we will assume they are two different copies and so V 1 ∩ V 2 remains empty) 
with a bijection f : V 1 −→ V 2 to form the graph H = (V 1 ∪ V 2, E1 ∪ E2 ∪ M) where M = {(v, f (v)) : v ∈ V 1}. This class of 
networks include a number of networks such as hypercubes, crossed cubes and twisted cubes. We note that BC networks 
are triangle-free, that is, they do not contain a K3 as a subgraph. The class of matching composition networks (MC networks 
or simply MCN’s) is defined as follows: Let G1 = (V 1, E1) and G2 = (V 2, E2) be two graphs with |V 1| = |V 2|, f : V 1 −→ V 2
be a bijection and M = {(v, f (v)) : v ∈ V 1}; then construct the graph G = (V 1 ∪ V 2, E1 ∪ E2 ∪ M). We remark that this is 
called matching composition network as M is a perfect matching in G . Often G is denoted by G(G1, G2, M). In [15], the 
conditional diagnosability of BC networks was studied and recently the corresponding problem for triangle-free MCN’s was 
studied in [25]. Since interconnection networks are usually regular, typically both G1 and G2 are set to be r-regular even 
though the definition allows more flexibility. In this paper, we consider several non-triangle-free families of MCN’s. We 
remark that if one wants to build a class of MCN’s that contain triangles, a natural definition would be the class of triangle 
bijective connection networks (TBC networks) and it is defined recursively as follows: Let G3 = {K4} and for r ≥ 4, let Gr be 
the set of all graphs that can be constructed by taking two (possibly the same) elements G1 = (V 1, E1) and G2 = (V 2, E2)

from Gr−1 (if we take the same element, we will assume they are two different copies and so V 1 ∩ V 2 remains empty) with 
a bijection f : V 1 −→ V 2 to form the graph G = (V 1 ∪ V 2, E1 ∪ E2 ∪ M) where M = {(v, f (v)) : v ∈ V 1}. So a TBC network 
in Gr is r-regular with 2r−1 vertices where r ≥ 3.

Our main goal is to develop a general diagnosability result for matching composition networks. As such, there are a 
number of ideas that need to be utilized. In order to make the exposition clearer, we choose to accomplish this in several 
steps. We first prove a special case and then we successively generalize it. Although this makes the paper slightly longer, 
we believe that this is a better way to convey the crux of the concepts. The paper is organized as follows: Section 2 sets 
up the definitions and a basic result for TBC networks; Section 3 gives several known results that are our building blocks; 
Section 4 gives a general result and Section 5 uses this result to determine the conditional diagnosability of TBC networks. 
Section 6 and Section 7 give variants and generalizations.

2. Fundamental notions and results

In this paper, we follow the usual graph theory terminology. In particular, let G be a graph and v ∈ V (G), NG(v) is the 
set of all the vertices adjacent to v and NG (S) = ⋃

v∈S N(v) \ S where S ⊂ V (G). We use δ(G) (respectively, �(G)) to denote 
the minimum (respectively, the maximum) degree of vertices in G .

As mentioned earlier, according to the comparison diagnosis model, a vertex w ∈ G , a comparator, sends an input to 
every pair of neighbors v and x, and generates a result r((v, x)w), which equals 0 if both v and x send back the same 
response (and if w is not faulty). Clearly, if r((v, x)w) = 1, then at least one of the three vertices is faulty. If w is faulty, 
then the result is unreliable. The collection of all such results is called the syndrome of the diagnosis. (For this model to 
function properly, there are a number of assumptions. We refer the readers to [9] for details.) A subset F ⊂ V (G) is said to 
be compatible with a syndrome r if r can be generated when all vertices in F are faulty and those in V (G) \ F are fault-free. 
Finally, a graph G(V , E) is diagnosable if, for every syndrome r, there is a unique F ⊂ V (G) compatible with r. One of the 
related problems is certainly, given such a syndrome of a network, how to identify its associated compatible faulty set. 
Various algorithms have been designed to serve this purpose under both the comparison diagnosis and the PMC models in 
[23,29,33].

On the other hand, [23] pointed out that two faulty sets may be compatible with the same syndrome. Such an obser-
vation leads to the notion of a t-diagnosable graph [23]: a graph is t-diagnosable as long as the size of the aforementioned 
unique faulty set F is no more than t . In this context, the diagnosability of a graph G , denoted as t(G), is defined to be the 
maximum number of faulty vertices that G can guarantee to identify, and the conditional diagnosability of G , denoted as 
tc(G), is defined to be the maximum number of faulty vertices that G can guarantee to identify, when no faulty set includes 
all the neighbors of any vertex in G . More specifically, two distinct faulty sets F1 and F2 are indistinguishable if and only if 
they are compatible with at least one syndrome, distinguishable otherwise. Hence, t(G) equals the maximum number q such 
that for all distinct faulty set pairs (F1, F2), |F1| ≤ q, |F2| ≤ q, F1 and F2 are distinguishable. We have a similar specification 
for tc(G).
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