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We study the freeness problem over morphism and matrix semigroups. We show that 
the freeness problem is undecidable for morphisms over a three-letter alphabet. We show 
that there is a commutative semiring R such that the freeness problem is undecidable for 
upper-triangular 2 × 2 matrices having entries in R .

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study the freeness problem over semigroups. In general, the freeness problem over a semigroup S with 
a recursive underlying set can be stated as follows: given a finite alphabet Σ and a morphism σ : Σ+ → S decide whether 
or not σ is injective.

For a general introduction to this topic see [3].
We will study the freeness problem for semigroups consisting of morphisms and for matrix semigroups. We show that 

the freeness problem is undecidable for semigroups consisting of morphisms over a three-letter alphabet. This is related to 
Open question 1 in [3].

We will also discuss the freeness problem for upper-triangular 2 × 2 matrices. In [3] it is asked whether there exists 
a commutative semiring R (satisfying some additional conditions) such that the freeness problem is undecidable for 2 × 2
matrices having entries in R . We will show that a simple rewriting of the undecidability proof given in [2] shows that 
actually the simple semiring N ×N consisting of tuples of nonnegative integers has the desired properties.

2. Definitions and earlier results

We use standard language-theoretic notation and terminology. In particular, the length of a word w is denoted by |w|
and the empty word is denoted by ε.

Let X be an alphabet and let L ⊆ X∗ . Then Alph(L) is the smallest subset Y of X such that L ⊆ Y ∗ .
As usual, N is the set of nonnegative integers. Suppose n ≥ 2 is an integer. If s is a nonnegative integer and 

a0, . . . , as−1 ∈ N, then the value of the word w = a0a1 . . .as−1 in base n is the number
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valn(w) = a0 + a1n + · · · + as−1ns−1.

Observe that when using the notation valn we do not assume that the digits are smaller than n. Instead, we allow the digits 
to be arbitrary nonnegative integers. It is clear, for example, that val2 gives an injective mapping from {1, 2}∗ into N.

For any alphabet X , let Hom(X∗) be the set of all morphisms from X∗ to itself. Hom(X∗) is a monoid with respect to 
the usual product of morphisms.

If R is a semiring and n is a positive integer, Rn×n is the set of n × n matrices having entries in R and Tri(n, R) is the 
subset of Rn×n consisting of upper-triangular matrices. Further, Tri1(2, R) is the subset of Tri(2, R) consisting of matrices 
having the identity element of R in the lower right corner.

Following [3] we denote W = {1, 2}∗ . Hence the semigroup W ×W is the set of all pairs (u, v) where u and v are words 
over the binary alphabet {1, 2}. (In [3] the more natural alphabet {0, 1} is used. To avoid problems with leading zeros we 
have replaced {0, 1} by {1, 2}. This change is not needed when considering matrix monoids but it will be useful when we 
consider monoids consisting of morphisms.)

In what follows S will always be a monoid with a recursive underlying set.
Suppose k is a positive integer and L is a language. We will consider the problems Free[S], Free(k)[S] and Free[S, L]

defined as follows.
Free[S] is the problem: given a finite alphabet Σ and a morphism σ : Σ∗ → S , decide whether or not σ is injective. 

Free(k)[S] is obtained from Free[S] by considering only alphabets having k letters. Hence Free(k)[S] is the problem: given 
an alphabet Σ having k letters and a morphism σ : Σ∗ → S decide whether or not σ is injective. Free[S, L] is obtained 
from Free[S] by considering the injectivity only on the language L. Hence Free[S, L] is the problem: given a morphism 
σ : Σ∗ → S such that L ⊆ Σ∗ decide whether or not σ is injective on L.

Note that it does not make sense to consider the problems Free(k)[S, L] for various values of k since the cardinality of 
Alph(L) already determines the unique value of k for which the problem is of interest.

More general problems are obtained by considering various classes of languages. If L is an arbitrary class of lan-
guages and k is a positive integer, the problems Free[S, L] and Free(k)[S, L] are defined in the natural way. The problem 
Free(k)[S, L], for example, is: given a language L in L such that the cardinality of Alph(L) is at most k and a morphism 
σ : Alph(L)∗ → S decide whether or not σ is injective on L.

For an excellent introduction to problems Free[S] and Free(k)[S] we refer to [3]. The next three theorems give some 
important undecidability results concerning the freeness problem. For their proofs see [1–4].

Theorem 1. For every integer k ≥ 13, Free(k)[Tri(3, N)] is undecidable.

Theorem 2. Let H be the skew field of rational quaternions. Then Free(7)[H2×2] is undecidable.

Theorem 3. For every integer k ≥ 13, Free(k)[W ×W] is undecidable.

The decidability status of Free[Tri(2, N)] is open (see [2]).
In the next section we will use the following theorem due to [4] which shows that the mixed modification of PCP is 

undecidable for alphabets having at least seven letters.

Theorem 4. Let Σ be an alphabet having at least seven letters. It is undecidable for morphisms h, g : Σ∗ → W whether or not there 
exists a nonempty word w = a1a2 . . .ak where ai ∈ Σ for 1 ≤ i ≤ k such that

h1(a1)h2(a2) . . .hk(ak) = g1(a1)g2(a2) . . . gk(ak)

where hi, gi ∈ {h, g} for 1 ≤ i ≤ k and h j �= g j for at least one index j.

It is sometimes possible to prove results for morphism monoids by using results concerning matrix monoids or vice 
versa. An example of this is provided by Theorem 2.14 in [3] stating that the morphism torsion problem is decidable. The 
proof is done by reducing the problem to the matrix torsion problem. The idea can easily be extended to prove that it is 
decidable whether or not a finitely generated submonoid of a morphism monoid is finite.

3. The freeness problem for morphism monoids

In this section we prove that the freeness problem is undecidable for semigroups consisting of morphisms over a three-
letter alphabet.

Theorem 5. If Δ has at least three letters, then Free(14)[Hom(Δ∗)] is undecidable.

Proof. Let Δ = {a, b, c} and let Σ = {x1, . . . , x7}. Let g, h : Σ∗ → W be morphisms. Define the morphisms gi, hi : Δ∗ → Δ∗
for 1 ≤ i ≤ 7 by
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