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Let G and H be graphs, with |V (H)| ≥ |V (G)|, and f : V (G) → V (H) a one to one map 
of their vertices. Let dilation( f ) = max{distH ( f (x), f (y)) : xy ∈ E(G)}, where distH (v, w) is 
the distance between vertices v and w of H . Now let B(G, H) = min f {dilation( f )}, over all 
such maps f .
The parameter B(G, H) is a generalization of the classic and well studied “bandwidth” 
of G , defined as B(G, P (n)), where P (n) is the path on n points and n = |V (G)|. Let [a1 ×
a2 × · · · × ak] be the k-dimensional grid graph with integer values 1 through ai in the i’th 
coordinate. In this paper, we study B(G, H) in the case when G = [a1 ×a2 ×· · ·×ak] and H
is the hypercube Q n of dimension n = �log2(|V (G)|)�, the hypercube of smallest dimension 
having at least as many points as G . Our main result is that

B
([a1 × a2 × · · · × ak], Q n

) ≤ 3k,

provided ai ≥ 222 for each 1 ≤ i ≤ k. For such G , the bound 3k improves on the previous 
best upper bound 4k + O (1). Our methods include an application of Knuth’s result on two-
way rounding and of the existence of spanning regular cyclic caterpillars in the hypercube.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we will usually follow standard graph theoretic terminology, as may be found for example in [31]. We 
let P (t) stand for the path on t vertices. The cartesian product G × H of two graphs G and H is the graph with vertex 
set V = {(v, w) : v ∈ V (G), w ∈ V (H)} and edge set E = {(v, w)(v ′, w ′): either v = v ′ and w w ′ ∈ E(H), or v v ′ ∈ E(G) and 
w = w ′}. All logarithms are taken base 2.

1.1. Background and main result

The analysis of how effectively one network can simulate another, and the resulting implications for optimal design of 
parallel computation networks, are important topics in graph theoretic aspects of computer science. One of the measures 
of the effectiveness of a simulation is the dilation of the corresponding map (or “embedding”) of networks, defined as 
follows. Let G and H be two graphs and f : V (G) → V (H) a map from the vertices of G to those of H . As a convenience we 
typically write such a map as f : G → H , with the meaning that it is a map from vertices to vertices. Similarly we sometimes 
write |G| for |V (G)|. Apart from an exception indicated below in a review of previous research on our topic, we will suppose 
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that |V (G)| ≤ |V (H)| and that f is one to one. Whether f is one to one or not, we let dilation( f ) = max{distH ( f (x), f (y)) :
xy ∈ E(G)}, where distH (v, w) is the distance between vertices v and w of H , defined as the minimum number of edges in 
any path of H joining v and w . Thus dilation( f ) is the maximum “stretch” experienced by any edge of G under the map f . 
Now define B(G, H) to be min f {dilation( f )}, over all such maps f . Note that B(G, H) is a generalization of the classic and 
well studied “bandwidth” of G , defined as B(G, P (n)), where n = |V (G)|.

The study of B(G, H) arises when each of G and H is a computation network, and the goal is to have H simulate a 
computation in G . A given map f indicates how the vertices of H play the roles of the vertices of G , and dilation( f ) is a 
measure of the communication delay in this roleplaying. A message between adjacent vertices x and y in G taking unit time 
would become a message between f (x) and f (y) in H taking time distH ( f (x), f (y)), which in the worst case is dilation( f )
if a shortest path in H joining f (x) and f (y) for this message is used. Indeed the delay may be worse when one considers 
the full simulation, requiring in addition to f a routing path for each edge xy ∈ E(G), namely, a path in H (not necessarily 
shortest) joining f (x) and f (y). So let the edge congestion of f be the maximum, over all edges v w ∈ E(H), of the number 
of routing paths in H that contain v w . The edge congestion of f is then an additional contribution to the communication 
delay of the embedding f .

In this paper we obtain upper bounds on B(G, H) when G is a multidimensional grid and H is the smallest hypercube 
having at least |V (G)| vertices. To clarify, let ai ≥ 2, 1 ≤ i ≤ k, be integers. The k-dimensional grid G = [a1 × a2 × · · · × ak] is 
the graph with vertex set V (G) ={x = (x1, x2, . . . , xk) : xi an integer, 1 ≤ xi ≤ ai} and edge set E(G) ={xy : ∑k

i=1 |xi − yi | = 1}. 
So two vertices of G are joined by an edge precisely when they disagree in exactly one coordinate, and in that coordinate 
they differ by 1. Thus for x, y ∈ V (G) we have distG(x, y) = ∑k

i=1 |xi − yi |. One can also write G as the cartesian product 
of paths G = P (a1) × P (a2) × · · · × P (ak). We sometimes use the word “grid” to denote a k dimensional grid when k is 
understood.

The n-dimensional hypercube Q n is the n-dimensional grid [2 ×2 ×· · ·×2]. We follow the traditional view whereby V (Q n)

is the set of all strings of length n over the alphabet {0, 1}, where two such strings are joined by an edge if they disagree 
in exactly one coordinate. This departs in a trivial way from our notation above, where we would have required 1 ≤ xi ≤ 2. 
Clearly |V (Q n)| = 2n and we let Opt(G) be the smallest hypercube containing at least |V (G)| vertices, so Opt(G) = Q t where 
t = �log2(|V (G)|)�.

There is a substantial literature on the simulation of various networks by hypercubes and their related networks; the 
butterfly, shuffle exchange and DeBruijn graphs. See books [24] and [28] for excellent expositions on these topics. Both 
books emphasize bounds on dilation and congestion in graph embeddings, where the first also includes routing and im-
plementation of various algorithms while the second gives a unified approach to applying separator theorems for deriving 
such bounds. An early survey on embedding graphs into hypercubes [25] mentions necessary and sufficient conditions 
(originating in [18]) for a graph to be a subgraph of some hypercube. The same survey mentions the fact that for the com-
plete binary tree Tn on 2n − 1 vertices there is an embedding f : Tn → Q n such that for every edge xy ∈ E(Tn) we have 
distQ n ( f (x), f (y)) = 1 with the exception of a single edge where this distance is 2 [17]. In [5] it is shown how to embed 
any 2n node bounded degree tree into Q n with O (1) dilation and O (1) edge congestion, as n grows. In the same paper 
these results are extended to embedding bounded degree graphs with O (1) separators. In [24] many-to-one maps of binary 
trees into hypercubes are considered, letting the load be the maximum number of tree nodes mapped onto a hypercube 
node. Using probabilistic methods and error correcting codes it is shown how to embed an M node binary tree in an N
node hypercube with dilation 1 and load O ( M

N + log(N)), and how to perform the same embedding with dilation O (1) and 
load O ( M

N + 1).
Another type of hypercube embedding problem is the one of embedding long cycles in hypercubes, where these cycles 

are required to avoid prescribed faulty vertices or edges. Some results along these lines may be found in [10,19], and [20].
Concerning the embedding of multidimensional grids into hypercubes, observe first that if p1, p2, . . . , pr are positive 

integers summing to n, and G = [P (2p1 ) × P (2p2 ) × · · · × P (2pr )], then Q n = Opt(G) and Q n contains G as a spanning 
subgraph. Thus B(G, Opt(G)) = 1 in this case. In fact one can show that [a1 ×a2 ×· · ·×ak] is a subgraph of Q n if and only if 
n ≥ �log(a1)� +�log(a2)� +· · ·+�log(ak)�; see Problem 3.20 in [24]. Answering a question posed in [25] about 2-dimensional 
grids G = [a1 ×a2], it is shown in [9] and in [8] that B(G, Opt(G)) ≤ 2. In [9] it is also shown for arbitrary multidimensional 
grids G = [a1 × a2 × · · · × ak] that B(G, Opt(G)) ≤ 4k + 1. Independently it was shown in [23] that B(G, Opt(G)) ≤ 4k − 1
for such G , this upper bound being realized by a parallel algorithm on the hypercube. Still for such G , it was shown in 
[4] that B(G, Opt(G)) ≤ k, assuming quite involved and restrictive inequality constraints on the ai . It was shown in [21]
that determining whether a given graph G can be embedded in Opt(G) with edge congestion 1 is NP-complete. Later it 
was shown in [29] that any G = [a1 × a2] can be embedded in Opt(G) with edge congestion at most 2 and dilation at 
most 3. Following up on a question posed in [25], the issue of many-to-one embeddings of 2 and 3 dimensional grids G
into hypercubes was explored in [27]. For these results, let Opt(G)/2t denote the hypercube of dimension �log(|G|)� − t . 
If f : G → Opt(G)/2t is a many-to-one map, then as above let the load of f be max{| f −1(z)| : z ∈ Opt(G)/2t}. It was shown 
in [27] that for a 2-dimensional grid G there is a many-to-one map f : G → Opt(G)/2t of dilation 1 and load at most 
1 + 2t , and when G is 3-dimensional there is a map f : G → Opt(G)/2 of dilation at most 2 and load at most 3, and a map 
f : G → Opt(G)/4 of dilation at most 3 and load at most 5.

The main result of the present paper is that B([a1 × a2 × · · · × ak], Q n) ≤ 3k, provided ai ≥ 222 for each 1 ≤ i ≤ k. This 
improves on the 4k − 1 bound above under this condition on the ai . We construct a one to one map Hk : G → Opt(G)
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