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In this paper, we develop a new parameterized algorithm for the Independent Feedback

Vertex Set problem. Given a graph G = (V , E), the goal of the problem is to determine
whether there exists a vertex subset F ⊆ V such that V − F induces a forest in G and
F is an independent set. We show that there exists a parameterized algorithm that can
determine whether a graph contains an IFVS of size k or not in time O (4kn2). To our
best knowledge, this result improves the known upper bound for this problem, which is
O (5knO (1)).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A feedback vertex set (FVS) in a graph G = (V , E) is a vertex subset F ⊆ V such that vertices in V − F induce a forest
in G . Feedback vertex sets have important applications in deadlock recovery in the development of operating systems [23]
and database management systems [17]. Moreover, F is an independent feedback vertex set (IFVS) if it induces an independent
set in G . In contrast to the fact that a graph always has an FVS, a graph (such as a clique) may not always have an IFVS.

In the past two decades, the FVS problem has been intensively studied. The goal of the problem is to determine whether
a graph contains an FVS of size k or not. In [14], it is shown that the problem is NP-complete. So far, a few exact algorithms
have been developed to compute a minimum FVS in a graph. For example, in [21], an algorithm that needs O (1.9053n)

time was developed to find a minimum FVS in a graph, this algorithm is also the first one that breaks the trivial O (2nn)

bound. In [9], an elegant algorithm that can enumerate all induced forests in a graph is used to find the minimum FVS. This
algorithm needs O (1.7548n) computation time. Recently, the upper bound of this problem is improved to O (1.7347n) [10].

In practice, efficient solutions exist for some NP-hard problems when some or all of the parameters in these problems
are small integers. A well known example is the Vertex Cover problem [7,18]. Given a parameter k and a graph G = (V , E),
a simple parameterized algorithm can decide whether G contains a vertex cover of size at most k in time O (2k|V |) [7,18].
This algorithm is efficient and can be used in practice when the parameter k is a fixed small integer.

An NP-hard problem is fixed parameter tractable if it can be solved in time O (g(p1, p2, . . . , ps)nc), where n is the size
of the problem, p1, p2, . . . , ps are the parameters in the problem, g is a function of p1, p2, . . . , ps and c is a constant that
does not depend on any of the parameters. In the past decades, a large number of NP-hard problems have been shown
to be fixed parameter tractable [7,18]. However, not all NP-hard problems are known to be fixed parameter tractable, the
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Independent Set problem is one of them [8]. Many of these problems are believed to be parameterized intractable and a
number of complexity classes have been identified to describe their parameterized complexity [8].

The parameterized FVS problem uses the size of an FVS as the parameter k. In [1,5–8,11–13,19,20], it is shown that the
problem is fixed parameter tractable and a few algorithms that can solve the problem in time O (2O (k)nO (1)) are developed.
In [3], it is shown that the problem can be solved in time O (5kkn2). In [2], the upper bound of this problem is further
improved to O (3.83kkn2). Recently, a faster algorithm that needs O ∗(3.592kn2) time is developed in [15]. This algorithm is
currently the best algorithm known for the FVS problem. In [4], a new technique is developed for connectivity problems
parameterized by tree width and it is shown that the FVS problem can be solved by a randomized algorithm in time
O ∗(3kn2).

Although the FVS problem has attracted a lot of attention from researchers in computer science, little effort has been
made toward the IFVS problem. Recently, it is shown that the FVS problem can be reduced to the IFVS problem in poly-
nomial time while preserving the parameter k [16]. The reduction is simply subdividing each graph edge once. The IFVS
problem is thus more general than the FVS problem.

In [16], an algorithm that needs O (5knO (1)) time is developed for the IFVS problem. The algorithm starts by applying
two reduction rules to remove all vertices of degree at most one from the graph and then uses the algorithm developed in
[2] to obtain an FVS of size k. The algorithm returns “no” if no such FVS exists. Based on such an FVS, a branching approach
is used to analyze the graph and determine whether it contains an IFVS of size k or not. It is also shown in [16] that the
IFVS problem has a kernel of size O (k3).

In this paper, we develop a new parameterized algorithm that can determine whether a graph contains an IFVS of size k
or not in time O (4kn2). Our algorithm follows the iterative compression approach developed in [22]. This technique has been
used to develop parameterized algorithms for many problems [5,6,12]. Specifically, given a graph G = (V , E), where V =
{v1, v2, v3, . . . , vn}, the approach starts with an empty graph and adds vertices one by one in the order of v1, v2, v3, . . . , vn

to reconstruct G . When vi (1 � i � n) is added, edges are also added to join vi with its neighbors in {v1, v2, . . . , vi−1}. We
denote the graph induced on vertices v1, v2, . . . , vi in G by Gi . In other words, Gi = G[{v1, v2, . . . , vi}]. It is clear that a
series of graph G0, G1, . . . , Gn can be constructed as the vertices are added to the graph, where G0 is an empty graph and
Gn = G . The approach starts with Gk since Gk trivially contains an IFVS of size k, each Gi (k + 1 � i � n) is processed to
determine whether it contains an IFVS of size k or not. If the answer is “yes”, the approach finds such a set Fi in Gi and
continues to process Gi+1, otherwise the approach outputs “no” since G does not contain an IFVS of size k if one of its
subgraph does not contain such an IFVS. The approach outputs “yes” if eventually G is found to contain an IFVS of size k.
A detailed description of the approach can be found in [22] and some other related work such as [5,6,12].

It is not difficult to see that, the key part of the above approach is to develop an algorithm that can determine whether
Gi+1 contains an IFVS of size k or not, given an FVS Li+1 of size k + 1 in Gi+1, where Li+1 = Fi ∪ {vi+1}. The major
contribution of this paper is the development of such an algorithm. We need to emphasize here that Li+1 may not be an
IFVS of Gi+1. However, we show later that our algorithm only needs the fact that it is an FVS of Gi+1. Other than using
a branching approach, the algorithm uses a dynamic programming based approach to accomplish the task in time O (4kn).
Since G contains n vertices in total, the total amount of computation time needed by the approach is thus at most O (4kn2).
Based on the simple parameter preserving polynomial time reduction that reduces the FVS problem to IFVS problem, we
also immediately obtain a parameterized algorithm that solves the FVS problem in time O (4kn2).

2. Notations and preliminaries

The graphs in this paper are undirected graphs without loops. For a given graph G = (V , E) and a vertex subset V ′ ⊆ V ,
G[V ′] is the subgraph induced on the vertices in V ′ . A vertex u is a neighbor of V ′ if it is joined to one of the vertices in
V ′ by an edge in G ′ . We use NG [V ′] to denote the set of neighbors of V ′ in G . We may omit the subscript G when the
underlying graph is clear in the context. Given two graphs G1 = (V 1, E1) and G2 = (V 2, E2), we use G1 ∪ G2 to denote the
graph (V 1 ∪ V 2, E1 ∪ E2). Furthermore, to simplify the notation, we use G − V ′ to denote subgraph G[V − V ′]. A vertex
subset V ′ is a feedback vertex set in G if G − V ′ is a forest. The objective of our algorithm is to find a feedback vertex set
that contains the minimum number of vertices and also induces an independent set.

3. The algorithm

Our algorithm is based on the following lemma.

Lemma 3.1. Given a graph G = (V , E) and an FVS F in G, a minimum IFVS in G can be computed in time O (4|F ||V |).

Proof. Since F is an FVS, G[V − F ] is a forest. As the first step of the algorithm, we arbitrarily choose a vertex in each tree
in G[V − F ] as the root of the tree. We color each vertex in V − F with black. We then check the number of children of
each vertex in the tree and find those that have more than two children. For each such vertex u, we remove the edges that
join it with its children c1, c2, . . . , cd , where d is the number of children in the tree. We then create a path of white vertices
w1, w2, . . . , wd−1. wd−1 is joined to u with an edge. To construct a binary tree, w1 is joined to c1 and c2 with two edges
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