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smallest cardinality of a dominating set of G. The bondage number of a nonempty graph G
is the smallest number of edges whose removal from G results in a graph with domination
number larger than y (G). The reinforcement number of G is the smallest number of edges

Keywords: whose addition to G results in a graph with smaller domination number than y(G). In
Complexity 2012, Hu and Xu proved that the decision problems for the bondage, the total bondage,
NP-completeness the reinforcement and the total reinforcement numbers are all NP-hard in general graphs.
NP-hardness In this paper, we improve these results to bipartite graphs.
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1. Introduction

For terminology and notation on graph theory not given here, the reader is referred to Xu [19]. Let G = (V, E) be a finite,
undirected and simple graph, where V =V (G) is the vertex set and E = E(G) is the edge set of G. For a vertex x € V(G),
let N¢g(x) ={y :xy € E(G)} be the open set of neighbors of x and N¢[x] = N¢(x) U {x} be the closed set of neighbors of x.

A subset D C V is a dominating set of G if every vertex in V — D has at least one neighbor in D. The domination number
of G, denoted by y(G), is the minimum cardinality among all dominating sets of G. A dominating set D is called a y-set
of G if |D| = y(G). The domination is an important and classic notion that has become one of the most widely researched
topics in graph theory and also is used to study property of networks frequently. A thorough study of domination appears
in the books [7,8] by Haynes, Hedetniemi, and Slater. Among various problems related to the domination number, some
focus on graph alterations and their effects on the domination number. Here, we are concerned with two particular graph
modifications, the removal and addition of edges from a graph. The bondage number of G, denoted by b(G), is the minimum
number of edges whose removal from G results in a graph with a domination number larger than the one of G. The
reinforcement number of G, denoted by r(G), is the smallest number of edges whose addition to G results in a graph with a
domination number smaller than the one of G. The bondage number and the reinforcement number were introduced by Fink
et al. [3] and Kok, Mynhardt [13], respectively, in 1990. The reinforcement number for digraphs has been studied by Huang,
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Wang and Xu [12]. The bondage number and the reinforcement number are two important parameters for measuring the
vulnerability and stability of the network domination under link failure and link addition. Recently, Xu [20] gave a review
article on bondage numbers in 2013.

A dominating set D of a graph G without isolated vertices is called a total dominating set if every vertex in D is also
adjacent to another vertex in D. The total domination number of G, denoted by y;(G), is the minimum cardinality among all
total dominating sets of G. In this paper, we use the symbol D; to denote a total dominating set. A total dominating set
Dy is called a y;-set of G if |D¢| = y+(G). The total domination was introduced by Cockayne et al. [2]. Total domination in
graphs has been extensively studied in the literature. In 2009, Henning [6] surveyed the recent results on total domination
in graphs. The total bondage number of G without isolated vertices, denoted by b;(G), is the minimum number of edges
whose removal from G results in a graph with a total domination number larger than the one of G. The total reinforcement
number of G without isolated vertices, denoted by r;(G), is the smallest number of edges whose addition from G results
in a graph with a total domination number smaller than the one of G. The total bondage number of a graph was first
studied by Kulli and Patwari [14] and further studied by Sridharan, Elias, Subramanian [17], Huang and Xu [11]. The total
reinforcement number of a graph was first studied by Sridharan, Elias, Subramanian [18] and further studied by Henning,
Rad and Raczek [9].

For a graph parameter, knowing whether or not there exists a polynomial-time algorithm to compute its exact value
is the essential problem. If the decision problem corresponding to the computation of this parameter is NP-hard or NP-
complete, then polynomial-time algorithms for this parameter do not exist unless NP = P. The problem of determining the
domination number has been proved NP-complete for chordal bipartite graphs [15]. For the total domination number, the
problem has been proved NP-complete for bipartite graphs [16]. There are many other complexity results for variations of
domination, these results can be found in the two books [1,8] and the survey [6].

As regards the bondage problem, Hattingh et al. [5] showed that the restrained bondage problem is NP-complete even
for bipartite graphs. Hu and Xu [10] have showed that the bondage, the total bondage, the reinforcement and the total
reinforcement numbers are all NP-hard for general graphs. We know that even if a problem is known to be NP-hard or
NP-complete, it may be possible to find a polynomial-time algorithm for a restricted set of instances from a particular
application. The bondage number and reinforcement number in graphs are very interesting research problems in graph
theory. There are many results about the bondage number and reinforcement number in bipartite graphs. Many famous
networks are bipartite graphs, such as hypercube graphs, partial cube, grid graphs, median graphs and so on. If we proved
these decision problems for the bondage and the reinforcement are all NP-hard, then the studies on the bondage number
and reinforcement number in bipartite graphs are more meaningful and we can directly deduce the decision problems for
the bondage and the reinforcement are both NP-hard in general graphs. So we should be concerned about the algorithmic
complexity of the bondage and reinforcement problems in bipartite graphs.

In this paper, we will show that the decision problems for the bondage, the total bondage, the reinforcement and the total
reinforcement numbers are all NP-hard even for bipartite graphs. In other words, there are not polynomial-time algorithms
to compute these parameters unless P = NP. The proofs are in Section 3, Section 4 and Section 5, respectively.

One can ask whether these four problems belong to NP or not. Since the problem of determining the domination number
is NP-complete, and it is not clear that there is a polynomial algorithm to verify (G — B) > y(G) (or y(G + R) < y(G))
for any subset B C E(G) (or R C E(G)), these four problems are not obviously seen to be in NP. We conjecture that they
are not in NP. But we can not prove that determining the bondage and the reinforcement are not NP-problems. This will be
our work to study further. In this paper, we only present the results that these four problems are all NP-hard in bipartite
graphs.

2. 3-satisfiability problem

In Computers and Intractability: A Guide to the Theory of NP-Completeness [4], Garey and Johnson outline three steps to prove
a decision problem to be NP-hard. We follow the three steps for proving our four decision problems to be NP-hard. We prove
our results by describing a polynomial transformation from the known NP-complete problem: 3-satisfiability problem. To
state the 3-satisfiability problem, in this section, we recall some terms.

Let U be a set of Boolean variables. A truth assignment for U is a mapping t: U — {T, F}. If t(u) =T, then u is said to be
“true” under t; if t(u) = F, then u is said to be “false” under t. If u is a variable in U, then u and u are literals over U. The
literal u is true under ¢ if and only if the variable u is true under ¢; the literal u is true if and only if the variable u is false.

A clause over U is a set of literals over U. It represents the disjunction of these literals and is satisfied by a truth
assignment if and only if at least one of its members is true under that assignment. A collection % of clauses over U is
satisfiable if and only if there exists some truth assignment for U that simultaneously satisfies all the clauses in %. Such a
truth assignment is called a satisfying truth assignment for . The 3-satisfiability problem is specified as follows.

3-satisfiability problem (3SAT):

Instance: A collection ¢ = {C1, Ca, ..., Cm} of clauses over a finite set U of variables such that |C;| =3
forj=1,2,...,m.

Question: Is there a truth assignment for U that satisfies all the clauses in ¢'?
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