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A Disjoint Path Cover (DPC for short) of a graph is a set of pairwise (internally) disjoint
paths that altogether cover every vertex of the graph. Given a set S of k sources and a
set T of k sinks, a many-to-many k-DPC between S and T is a disjoint path cover each
of whose paths joins a pair of source and sink. It is classified as paired if each source of
S must be joined to a designated sink of T , or unpaired if there is no such constraint.
In this paper, we show that every m-dimensional restricted hypercube-like graph with at
most m − 3 faulty vertices and/or edges being removed has a paired (and unpaired) 2-DPC
joining arbitrary two sources and two sinks where m � 5. The bound m − 3 on the number
of faults is optimal for both paired and unpaired types.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

An interconnection network is frequently modeled as a graph in which the vertices and edges represent nodes and
links, respectively. Since node and/or link failure is inevitable in a large network, fault tolerance is essential to the network
performance. One of the central issues in the study of interconnection networks is to detect (vertex-)disjoint paths, which
is naturally related to routing among nodes and fault tolerance of the network [17,25].

Disjoint path is one of the fundamental notions in graph theory from which many properties of a graph can be de-
duced [2,25]. A disjoint path cover (DPC for short) of a graph is a set of pairwise (internally) disjoint paths that collectively
cover every vertex of the graph. The disjoint path cover problem finds applications in many areas such as software testing,
database design, and code optimization [1,27]. In addition, the problem is concerned with applications where full utilization
of network nodes is important [32].

Let G be an undirected graph. For a set of k sources S = {s1, s2, . . . , sk} and a set of k sinks T = {t1, t2, . . . , tk} such that
S ∩ T = ∅, a many-to-many k-DPC is a disjoint path cover composed of k paths each of which joins a pair of source and
sink. It partitions the vertex set V (G) into k subsets. The many-to-many k-DPC is called paired if each source si should be
joined to a specific sink ti , whereas it is called unpaired if each source si can be freely joined to a sink t j under an arbitrary
bijection σ from S to T where t j = σ(si). The other two possible k-disjoint path covers are of one-to-many type joining
S = {s} and T = {t1, t2, . . . , tk}, and of one-to-one type joining S = {s} and T = {t}, which are clearly understandable. For
more discussion, refer to [23,32].
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Definition 1. A graph G is called f -fault paired (resp. unpaired) k-disjoint path coverable if f + 2k � |V (G)| and G has a paired
(resp. unpaired) k-DPC joining an arbitrary set S of k sources and a set T of k sinks in G \ F for any fault set F where
S ∩ T = ∅ and |F | � f .

An f -fault paired k-disjoint path coverable graph is, by definition, f -fault unpaired k-disjoint path coverable. Given S
and T in a graph G , it is NP-complete to determine if there exists a one-to-one, one-to-many, or many-to-many k-DPC
joining S and T for any fixed k � 1 [32,33]. The disjoint path cover problems have been studied for graphs such as hy-
percubes [5–7,10,13,19,24], recursive circulants [20,21,32,33], and hypercube-like graphs [18,22,28,33], cube of a connected
graph [29,30], and k-ary n-cubes [35,37]. Necessary conditions for a graph G to be f -fault many-to-many k-disjoint path
coverable have been established in terms of its connectivity κ(G) and its minimum degree δ(G) [32,33], as shown below.

Lemma 1. (a) If a graph G with |V (G)| � f + 2k + 1 is f -fault unpaired k (� 2)-disjoint path coverable, then f + k � δ(G) − 1 [33].
(b) If a graph G is f -fault paired k-disjoint path coverable, then f + 2k � κ(G) + 1 [32].

Meanwhile, Restricted Hypercube-Like graphs (RHL graphs for short) [31] are a subset of nonbipartite hypercube-like
graphs that have received much attention over the recent decades. For example, crossed cubes [12], Möbius cubes [8],
twisted cubes [14], multiply twisted cubes [11], Mcubes [36], and generalized twisted cubes [4] are all RHL graphs.
An m-dimensional RHL graph, which will be defined in the next section, has 2m vertices. It is an m-regular graph of
connectivity m.

Every m-dimensional RHL graph with m � 3 is known to be (a) f -fault unpaired k-disjoint path coverable for any f
and k � 1 subject to f + k � m − 2 [28], and (b) f -fault paired k-disjoint path coverable for any f and k � 2 subject
to f + 2k � m [33]. The bound m − 2 on f + k for the unpaired type and the bound m on f + 2k for the paired type
respectively are one less than the optimal bounds of the necessary conditions of Lemma 1. It is still an open problem
whether the optimal bounds can be achieved for all RHL graphs.

The problem has been partially solved in the sense that recursive circulants have the optimal bounds. Note that every
odd-dimensional recursive circulant G(2m,4) is included in RHL graphs (while not every even-dimensional recursive circu-
lant is). Every m-dimensional recursive circulant G(2m,4) with m � 5 is known to be (a) f -fault unpaired k-disjoint path
coverable for any f and k � 2 subject to f + k � m − 1 [20], and (b) f -fault paired k-disjoint path coverable for any f and
k � 2 subject to f + 2k � m + 1 [21].

In this paper, we achieve the optimal bounds of the necessary conditions of Lemma 1 for all RHL graphs where k = 2.
In other words, we prove our main theorem that every m-dimensional RHL graph is (m −3)-fault paired 2-disjoint path coverable
where m � 5. This leads to the fact that the graph is also (m − 3)-fault unpaired 2-disjoint path coverable. The bound m − 3
on the number of faults is the maximum possible for both paired and unpaired types.

Our contribution can also be seen as a generalization of fault-hamiltonicity of RHL-graphs, discovered in [31], that every
m-dimensional RHL graph is (m −3)-fault hamiltonian-connected, where a graph is said to be hamiltonian-connected if every
pair of vertices are joined by a hamiltonian path. Note that a paired (or unpaired) 2-disjoint path coverable graph is always
hamiltonian-connected [32]. To be precise, a graph G has a hamiltonian path from s to t passing through a prescribed edge
(x, y), where {x, y} ∩ {s, t} = ∅ and x is required to be visited before y, if and only if G has a paired 2-DPC joining the (s, x)
and (y, t) pairs (i.e., s1 = s, t1 = x, s2 = y, and t2 = t). If the order in which the two end-vertices of the prescribed edge
(x, y) are encountered during traversal of a hamiltonian path from s to t does not matter, it suffices to employ an unpaired
2-DPC joining S = {s, t} and T = {x, y} (instead of the paired one).

The rest of this paper is organized as follows. We give preliminaries in Section 2. Sections 3 and 4 are then devoted to a
proof of our main theorem. Finally, we conclude in Section 5.

2. Preliminaries

A 3-dimensional RHL graph is isomorphic to recursive circulant G(8,4) that has a vertex set {vi: 0 � i � 7} and an
edge set {(vi, v j): i + 1 or i + 4 ≡ j (mod 8)}. The 3-dimensional RHL graph is also isomorphic to a 3-dimensional twisted
cube TQ3 or a Möbius ladder with four spokes [26] shown in Fig. 1. An m-dimensional RHL graph, m � 4, is recursively
defined with a graph operation ⊕. Given two graphs G0 and G1 with the same number of vertices and a bijection φ from
V (G0) to V (G1), we denote by G0 ⊕φ G1 the graph whose vertex set is V (G0) ∪ V (G1) and edge set is E(G0) ∪ E(G1) ∪
{(v, φ(v)): v ∈ V (G0)}. To simplify the notation, we often omit the bijection φ from ⊕φ when it is clear in the context.

Definition 2. (See [31].) A graph that belongs to RHLm is called an m-dimensional RHL graph where

• RHL3 = {G(8,4)}, and
• RHLm = {G0 ⊕φ G1: G0, G1 ∈ RHLm−1, φ is a bijection from V (G0) to V (G1)} for m � 4.

Every m-dimensional RHL graph, m � 3, is nonbipartite and has 2m vertices of degree m. It can be easily verified by
induction on m that the graph has no triangle (cycle of length three) and there exist at most two common neighbors for
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