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This paper investigates the semi-online machine covering problem on two hierarchical
machines where the jobs are correspondingly classified into two hierarchical classes. The
objective is to maximize the minimum machine load. We show that if we only know
the size of the largest job, no algorithm with a bounded competitive ratio exists. So we
consider the case where we know both the size and the class of the largest job. If we know
the size of the largest job and that it belongs to the higher class, then an optimal algorithm

with a (1 +
√

2
2 )-competitive ratio exists. If we know the size of the largest job and that

it belongs to the lower class, we design an optimal algorithm with an α-competitive ratio,
where α ≈ 2.48119 is the largest root of the equation x3 − 2x2 − 2x + 2 = 0. For the case
where the total size of all the jobs is known in advance, we show that the competitive
ratio of an optimal algorithm is 2.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we study semi-online variants of the machine covering problem on two hierarchical machines where the
jobs are correspondingly classified into two hierarchical classes. The goal is to maximize the minimum machine load under
the constraint that all the requests are satisfied. First proposed by Deuermeyer et al. [5], the machine covering problem
has application in the sequencing of maintenance activities for modular gas turbine aircraft engines. Bar-Noy et al. [1] first
studied hierarchical scheduling. It is a common practice in the service industry that differentiated services are provided
to customers based on their entitled privileges that are assigned according to their classes in the service hierarchy. While
hierarchy is a subjective concept, it is often put into practice in terms of different levels of access privilege to service
capacity. Hierarchical scheduling has many applications, such as in the service industry, computer systems, hierarchical
databases etc.

We focus on semi-online algorithms in this paper. In online and semi-online scheduling, the performance of an algorithm
is often measured by its competitive ratio. For a problem instance J and an algorithm A, let C A(J ) (or C A in short)
be the objective value produced by A and let C∗(J ) (or C∗ in short) be the optimal value of the corresponding offline
version (i.e., the optimal offline value). Then the competitive ratio of A is the smallest number c such that for any instance
J , C∗(J ) � cC A(J ). If the competitive ratio of an algorithm is at most α, we say that the algorithm is α-competitive.
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If no c satisfying the inequality exists, we say that the competitive ratio is unbounded or ∞. An online (semi-online)
scheduling problem has a lower bound ρ if no online (semi-online) algorithm has a competitive ratio smaller than ρ . An
online (semi-online) algorithm A is called optimal if its competitive ratio matches the lower bound for the problem.

In recent years, there have been many results on the study of hierarchical scheduling. Hwang et al. [7] study offline
hierarchical scheduling to minimize the makespan and propose an approximation algorithm LG-LPT. They prove that its
makespan is not greater than 5/4 times the optimal makespan for m = 2 and not greater than 2 − 1

m−1 times the optimal
makespan for m � 3, where m is the number of hierarchical machines. Glass and Kellerer [6] give an improved algorithm
with a worst-case ratio at most 3/2 for m machines. Ji and Cheng [8] propose a fully polynomial-time approximation scheme
(FPTAS) for hierarchical scheduling to minimize the makespan on m parallel machines.

For online hierarchical scheduling to minimize the makespan, Bar-Noy et al. [1] first present an (e + 1)-competitive
algorithm for the general case with m machines, which Crescenzi et al. [4] also provide. For the case with two machines,
Park et al. [12] and Jiang et al. [10] independently propose an optimal algorithm with a competitive ratio 5/3. Jiang [9]
extends the result to the case where there are exactly two hierarchical job classes on m machines. He proves that 2 is
a lower bound for online algorithms and proposes an online algorithm with a competitive ratio (12 + 4

√
2)/7. Zhang et

al. [16] improve the ratio to 1 + m2−m
m2−mk+k2 � 7/3, where k is the number of machines that can process the high class jobs.

First to study semi-online hierarchical scheduling to minimize the makespan, Park et al. [12] propose an optimal algo-
rithm with a competitive ratio 3/2 for the case where the total size of all the jobs is known in advance. Liu et al. [11] study
the case with bounded jobs, i.e., the processing time of each job is bounded within an interval [a,αa]. Recently, Zhang et
al. [15] provide optimal algorithm for the problem. Wu et al. [14] consider the cases where the optimal offline value of the
instance is known in advance and where the largest size of the jobs is known in advance. They provide optimal algorithms
for both problems. Extending hierarchical scheduling to the case with two uniform machines, Chassid and Epstein [2] study
online and semi-online problems and provide optimal algorithms.

In this paper we consider the semi-online hierarchical machine covering problems on two parallel identical machines. We
study two cases where the total size of all the jobs (denoted by T ) is known in advance and where the size of the largest
job (denoted by pmax) is known in advance. T and pmax are often assumed to be known in advance in the semi-online
scheduling literature for various reasons as stated in [3], and [13]. For the case where pmax is known in advance, we show
that there exists no algorithm with a bounded competitive ratio. In order to overcome this barrier, we assume that both
the size and class of the largest job are known in advance, i.e., we know Jmax = (pmax, gmax) in advance. For the case where

gmax = 1, we design an optimal algorithm with a competitive ratio 1 +
√

2
2 . For the case where gmax = 2, we design an

optimal algorithm with a competitive ratio α, where α ≈ 2.48119 is the largest root of the equation x3 − 2x2 − 2x + 2 = 0.
Finally, we study the case where T is known in advance and provide an optimal algorithm with a competitive ratio 2 for
the problem.

The rest of the paper is organized as follows: In Section 2 we introduce the notation and formulate the problems. In
Section 3 we propose optimal algorithms for the case where we know the largest job and its class in advance. In Section 4
we provide an optimal algorithm for the case where we know the total size of the jobs in advance. Finally, we conclude the
paper and suggest topics for future research in Section 5.

2. Problem definitions

We are given two parallel identical machines M1 and M2, and a set J of n independent jobs J1, J2, . . . , Jn . We denote
each job by J i = (pi, gi), where pi is the size of J i and gi ∈ {1,2} is the class of J i . Machine Mk has a certificate g(Mk) = k,
k = 1,2, associated with it. Machine Mk can process J i only when g(Mk) � gi . pi and gi are not known until the arrival of
job J i . Each job J i emerges immediately after J i−1 is scheduled. Let G1 = { J i | gi = 1} and G2 = { J i | gi = 2}, so J = G1 ∪G2.
We define the load of a machine as the completion time of the machine, i.e., the total size of all the jobs processed on it. Let
L1 and L2 denote the loads of machines M1 and M2, respectively. We must assign all the jobs to one of the two machines
and the objective value of a schedule is min{L1, L2}. We state the online problem as follows:

Given J , find a schedule to maximize min{L1, L2}.
Knowing T (or pmax , or Jmax) in advance, we state the semi-online variant of the problem as follows:

Given J and T (or pmax, or Jmax), find a schedule to maximize min{L1, L2}.
To ease presentation and exposition, we introduce the following notation for use in the remainder of the paper.

• Gk
i is the set of jobs of class i, i = 1,2, in the first k jobs.

• Gk
2i is the set of jobs of class 2 assigned to machine Mi , i = 1,2, immediately after job Jk is assigned.

• t(δ) is the total size of the jobs in any job set δ.
• t(Gk

i ) is the total size of the jobs in the job set Gk
i , i = 1,2. It follows that t(Gn

i ) = t(Gi), i = 1,2.
• pmax is the largest size of all the jobs.
• J B = (pmax, gmax) is the first largest job with size pmax and of class gmax that we know in advance.
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