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In TSP with profits we have to find an optimal tour and a set of customers satisfying
a specific constraint. In this paper we analyze three different variants of TSP with profits
that are NP-hard in general. We study their computational complexity on special structures
of the underlying graph, both in the case with and without service times to the customers.
We present polynomial algorithms for the polynomially solvable cases and fully polynomial
time approximation schemes (FPTAS) for some NP-hard cases.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

A huge number of papers has studied the well known Traveling Salesman Problem (TSP). In the TSP all customers are to
be visited. There exist, however, several practical situations where customers have to be selected among a set of potential
customers on the basis of their profits. The goal is to find an appropriate trade-off between the total collected profit and
the cost of the tour. A survey by Feillet et al. [13] defines these problems as the Traveling Salesman Problems with profits. The
objective function may be the difference between the total profit collected and the cost of the tour (Profitable Tour Problem
or PTP), the maximization of the total collected profit (Orienteering Problem or OP), the minimization of the cost of the
tour (Prize-Collecting TSP or PCTSP). These problems are all NP-hard in general. To further enlighten the computational
complexity of these problems, we investigate their complexity on some classes of instances, characterized by

• customers located on a path exiting from the depot;
• customers located on a cycle;
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• customers located on a star rooted at the depot;
• customers located on a tree rooted at the depot.

These classes of instances correspond to special structures of the underlying graph, namely a path, a cycle, a star, a tree.
We study the computational complexity of the problems on these classes of instances, both in the case a service time is

associated with each customer and in the case without service times. We present polynomial algorithms for the polynomi-
ally solvable cases and fully polynomial time approximation schemes for the NP-hard cases. We also present a reduction to
eliminate service times in general networks.

In the rest of the introduction we define the problems we study, present earlier results and summarize the results of
this paper.

In Section 2 we prove that the TSP with profits we study are intractable already on some rather restricted classes of
instances. These results justify the interest in some even more restricted network topologies. Moreover, at the end of this
section, we present a reduction lemma which transforms a problem instance with service times to one without. In Section 3
we prove solvability in linear time of four cases from which we derive the linear time solvability of a number of special
cases. Fully polynomial time approximation schemes are presented in Section 4 for OP and PCTSP on tree networks that can
be directly applied to star and path networks and easily adapted to cycle networks.

1.1. Problem definitions

We assume that a road network is represented by a connected weighted graph G = (V , E) where the vertices V = {i |
i = 0, . . . ,n} represent road intersections and locations of relevant points like the depot and the customers. We assume
throughout that the depot is indexed by 0 and other vertices are indexed from 1 to n. The edges represent physical con-
nections between pairs of vertices (i, j) and their weights ti, j represent the traveling time from vertex i to vertex j. In
general, visiting a customer i requires a service time si � 0 and offers a profit pi � 0; nevertheless, a customer vertex in the
network can be traversed without visiting it. This means that no service time is spent and no profit is collected. For sake
of uniformity we consider road intersection vertices as customers with no profit and zero service time. In this paper we
assume all parameters ti, j , si and pi to be integers.

The problem can be formulated in different versions. In all cases a subset of customers S ⊆ {1, . . . ,n} has to be selected in
order to optimize different objective functions and satisfy different constraints involving both the total profit P S = ∑

i∈S pi
and the smallest possible time, denoted by TSPS , of visiting all the customers in S , which is calculated from the minimum
time length of a tour starting from (and returning to) the depot plus the total service time ST S = ∑

i∈S si .
We recall the different variants of the problem as reported in the literature (see, for instance, Feillet et al. [13]).

Profitable Tour Problem – PTP

max(P S − TSPS)

Orienteering Problem – OP

max(P S)

such that

TSPS � Tmax

where Tmax is given.

Prize Collecting TSP – PCTSP

min(TSPS)

such that

P S � Pmin

where Pmin is given.

It is worth noticing that there is not a general agreement in the literature about problem naming and formulation.
Namely, what is called Profitable Tour Problem (PTP) by Feillet et al. [13] is called Prize-Collecting problem by authors
like Bienstock et al. [7]. Moreover, PTP is sometimes formulated as a minimization problem: min(TSPS + P S) trying to find
a tour that minimizes the cost and the profit missed for not visiting vertices in S . As pointed out in Johnson et al. [18],
the two formulations are equivalent as optimization problems (complementing each other), but they are not when approx-
imation algorithms are concerned. From now on, in this paper, we follow the terminology proposed above and refer to the
minimization formulation of PTP as PTPmin.
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