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In this paper, we reformulate the scheme introduced by Bouchitté and Todinca in [1],
which computes treewidth and minimum fill-in of a graph using a dynamic programming
approach. We will call the scheme BT scheme. Although BT scheme was originally designed
for computing treewidth and minimum fill-in, it can be used for computing other graph
parameters defined in terms of minimal triangulation. In this paper, we reformulate BT
scheme so that it works for computing other graph parameters defined in terms of minimal
triangulation, and give examples of other graph parameters.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

In [1,2], Bouchitté and Todinca introduced a dynamic programming approach for computing treewidth and minimum
fill-in of a graph, and they showed that, using the dynamic programming approach, treewidth and minimum fill-in can
be computed in polynomial time in the number of minimal separators. We will call the dynamic programming approach
the BT scheme. Although BT scheme was originally designed for computing treewidth and minimum fill-in, it can be used
for computing other graph parameters defined in terms of minimal triangulation. (Note that computing treewidth and
minimum fill-in both can be translated into problems on minimal triangulation.) Indeed, several variants of BT scheme have
been developed to compute other graph parameters/problems parameter by parameter: tree-length [3] via chordal sandwich
problem, treecost [4], and the perfect phylogeny problem [5]. To unify those variants, we reformulate BT scheme so that it
works for computing other graph parameters defined in terms of minimal triangulation.

The importance of establishment of BT scheme is that it unifies the polynomial computability of treewidth and mini-
mum fill-in for the several graph classes: circle graphs [6,7], circular-arc graphs [8,7], cographs [9], chordal bipartite graphs
[10,11], weakly chordal graphs [12], and d-trapezoid graphs [13]. Those graph classes have a polynomial number of mini-
mal separators. In fact, it was conjectured that treewidth and minimum fill-in are computable in polynomial time for the
classes of graphs with a polynomial number of minimal separators [14,15], and Bouchitté and Todinca [1,2] proved that the
conjecture holds.

BT scheme is based on two types of recursive formulas: one is on minimal separators in [16]:
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S∈ΔG

max
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,
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∑
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,

and the other is on potential maximal cliques in [1]:

tw
(

R(S, C)
) = min
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max
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(
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))

,

mfi
(
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(
fill(Ω) − fill(S) +

∑
mfi

(
R(Si, Ci)

))
,

where S and Ω mean a minimal separator and a potential maximal clique, respectively. (See Section 3 for details.) To modify
BT scheme so as to be able to compute not only treewidth and minimum fill-in but also other graph parameters defined in
terms of minimal triangulation, we reformulate the recursive formulas in Section 3.

It is known that treewidth (tw), minimum fill-in (mfi), and chordal sandwich problem between G1 and G2 (csp(G1, G2))
can be expressed as follows (see Section 2 for the notation):

• tw(G) = minH∈MT(G) maxM∈MC(H) |M| − 1,
• mfi(G) = minH∈MT(G)

∑
e∈FEG (H) 1,

• csp(G1, G2) = minH∈MT(G1)

∑
e∈FEG (H) g(e), where g(e) =

{
0 if e∈E(G2)

1 otherwise.

As we will show in Section 6, tree-length (tl) can be represented as

• tl(G) = minH∈MT(G) maxM∈MC(H) distG(M).

To unify those expressions, we consider two types of graph parameters, one is clique type: graph parameters expressed as
minH∈MT(G) maxM∈MC(H) f (M), and the other is fill-in type: graph parameters expressed as minH∈MT(G)

∑
e∈FEG (H) f (e). The

former corresponds to treewidth and the latter to minimum fill-in. Then, we show that BT scheme works for the graph
parameters of both clique and fill-in types.

2. Definitions and fundamental results

Let G be a graph and U be a subset of V (G).

notation For a vertex v in G , N(v) denotes the neighbor set of v , and N(U ) denotes the set
⋃

u∈U N(u)− U . G[U ] denotes
the subgraph of G induced by U . We denote by CG(U ) the set of connected components of G[V \U ], and by GU the
graph obtained from G by completing U , i.e., by adding an edge between every pair of non-adjacent vertices of U .
For convenience, for a connected component C ∈ CG(U ), we often make no distinction between the component C
and its vertex set V (C), so C be used in the sense of V (C). We will drop the subscript G when it is clear from
the context. For example, we will write simply C(U ) instead of CG(U ). MC(G) denotes the set of maximal cliques
of G . For x, y ∈ V (G), distG(x, y) denotes the distance between u and v in G . We denote by fillG(U ) the number
of non-edges of U in G .

component A component C ∈ CG(U ) is a full component associated with U if for each vertex u ∈ U there is a vertex in v ∈ C
such that {u, v} ∈ E(G).

separator ([2]) A subset S ⊆ V (G) is an a,b-separator of G for two non-adjacent vertices a,b ∈ V (G) if the removal of S
from G separates a and b in different connected components. An a,b-separator S is minimal if no proper subset
of S separates a and b. S is a minimal separator of G if there are two vertices a and b for which S is a minimal
a,b-separator. We denote by ΔG the set of all minimal separators of G .

triangulation ([2]) A graph is chordal if every cycle of length at least four has a chord (i.e. an edge joining two vertices that
are not adjacent in the cycle). A triangulation of G = (V , E) is a chordal graph H = (V , E ∪ F ) such that E ∩ F = ∅,
and F is called the fill-in edges of H . We denote F by FEG(H). H is a minimal triangulation of G if no proper
subgraph of H is a triangulation of G . MT(G) denotes the set of minimal triangulations of G . It is known that
ΔH ⊆ ΔG (see e.g. Theorem 2.9 in [1]).

potential maximal clique ([2]) A vertex set Ω of G is called a potential maximal clique if there is a minimal triangulation
H of G such that Ω is a maximal clique of H . We denote by ΠG the set of all potential maximal cliques of G . For
convenience, we stretch MT(·) slightly as follows: for a potential maximal clique Ω in G , MT(G,Ω) denotes the
set {H | H ∈ MT(G) and Ω ∈ MC(H)}.

block Let S be a minimal separator of G . For C ∈ C(S), we say that (S, C) = S ∪ C is a block associated with S (or simply
block of S). A block (S, C) is a full if C is a full component associated with S . The graph R(S, C) obtained from
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