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A breakthrough in the field of text algorithms was the discovery of the fact that the
maximal number of runs in a word of length n is O (n) and that they can all be computed
in O (n) time. We study some applications of this result. New simpler O (n) time algorithms
are presented for classical textual problems: computing all distinct k-th word powers
for a given k, in particular squares for k = 2, and finding all local periods in a given
word of length n. Additionally, we present an efficient algorithm for testing primitivity
of factors of a word and computing their primitive roots. Applications of runs, despite
their importance, are underrepresented in existing literature (approximately one page in
the paper of Kolpakov and Kucherov, 1999 [25,26]). In this paper we attempt to fill in
this gap. We use Lyndon words and introduce the Lyndon structure of runs as a useful
tool when computing powers. In problems related to periods we use some versions of the
Manhattan skyline problem.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions and periodicities in words are two of the fundamental topics in combinatorics on words [1,10,28]. These
notions are widely used in many fields, such as combinatorics on words, pattern matching, automata theory, formal language
theory, data compression, molecular biology, etc. The most commonly studied types of repetitions are powers (i.e. squares,
cubes) and runs (also called maximal repetitions). A power of a word is simply composed of a number of juxtaposed
occurrences of the word. A run is an inclusion-maximal periodic factor of a word in which the shortest period repeats
at least twice. A survey by Crochemore et al. [5] further explains the motivation and describes known combinatorial and
algorithmic properties of powers and runs.

The notion of a run was introduced in [25,26,29]. The crucial property of runs is that their maximal number in a word of
length n is O (n), see Kolpakov and Kucherov [25,26]. Due to the work of several authors more accurate bounds have been
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Fig. 1. The structure of runs in the word baaabaabaaabaabaaabaabaab. This word contains: 7 runs with period 1, 3 runs with period 3, 2 runs with
period 4 and one run with period 7. The runs of period 3 are (3,10,3), (10,17,3) and (17,25,3).

obtained, eventually it has been shown [6,31] that this number is between 0.944n and 1.029n. The structure of all runs in
a word provides succinct and very useful information about periodic properties of the word.

Several basic applications of runs were given in [25,26]. These include extracting all branching squares and counting
primitively-rooted powers of a given exponent starting at each position of the word. We present a number of other algo-
rithmic applications of runs. Our methods are considerably simpler than previously known linear time algorithms and show
new structural relations between the notions of periodicity. A preliminary version of this paper appeared at SPIRE 2010 [7].

First we consider the problem of computing all distinct k-th powers in a word of length n, for a given k. It is known that
the number of distinct squares (k = 2) does not exceed 2n [13,17,18] and for cubes (k = 3) there is a tighter 0.8n bound
[27], which implies same bound for any value k � 4. Gusfield and Stoye [15] gave an O (n) time algorithm for computing
all the distinct squares. Unfortunately, this algorithm is complicated and uses suffix trees which are a rather heavyweight
data structure and add a logarithmic factor depending on the size of alphabet in most implementations. We present a much
simpler O (n) time algorithm which computes all distinct k-th powers in a word of length n using suffix arrays instead of
suffix trees. The most important combinatorial tool in our algorithm are Lyndon words, see [28].

Another application of the runs structure is the computation of local periods which are related to the critical factoriza-
tions of a word [10]. The known O (n) time algorithm by Duval et al. [11] employs several different techniques modified in a
non-trivial way. We present an equally efficient but simpler algorithm using the solution of the Manhattan Skyline Problem.

Finally, we consider factor-primitivity queries, which consist in checking, for any factor of a given word, whether it
is primitive and what is its primitive root. This problem has potential applications in data compression, in particular, in
run-length encoding and its derivatives. It is a special case of the factor period queries problem (finding the shortest period
of specified factors) that was already considered, see [24]. We provide a solution to factor-primitivity problem with O (n)

space and O (log n) query time, O (n logε n) space and O (log log n) query time, or O (n1+ε) space and O (1) query time, for
any ε > 0.

2. Preliminaries

Let u be a word of length n over a bounded alphabet Σ : u = u[1]u[2] . . u[n]. By u[i . . j] we denote a factor of u equal
to u[i] . . u[ j]. If i = 1 then it is called a prefix of u, and if j = n then it is called a suffix of u. We say that an integer p is
the (shortest) period of u[1 . .n] (notation: p = per(u)) if p is the smallest positive integer such that u[i] = u[i + p] holds for
all 1 � i � n − p.

A run v (a maximal repetition) in the word u is an interval [i, j] such that the shortest period p = per(v) of the
associated factor u[i . . j] satisfies 2p � j − i + 1, and the interval cannot be extended to the left nor to the right without
violating the above property, that is, u[i − 1] �= u[i + p − 1] and u[ j − p + 1] �= u[ j + 1], provided that the respective
letters exist. Denote by R(u) the set of all runs in u, each represented as a triple (i, j, p), see also Fig. 1. It is known that
|R(u)| = O (n) [5] and all elements of R(u) can be computed in O (n) time [26] (a more practical algorithm for computing
all runs is given in [3]).

If wk = u (k is a positive integer) then we say that u is the k-th power of the word w . A square (cube) is the 2nd (3rd)
power of a nonempty word. The primitive root of a word u, denoted root(u), is the shortest word w such that wk = u for
some positive integer k. We call a word u primitive if root(u) = u, otherwise it is called non-primitive.

Let us recall two useful data structures in word processing.

Suffix arrays. The suffix array of a word u consists in three tables: SUF, LCP and RANK, see Table 1. The SUF array stores
the list of positions in u sorted according to the increasing lexicographic order of suffixes starting at these positions, i.e.:

u
[
SUF[1] . .n

]
< u

[
SUF[2] . .n

]
< · · · < u

[
SUF[n] . .n

]
.

Thus, indices of SUF are ranks of the respective suffixes in the increasing lexicographic order. The LCP array is also indexed
by the ranks of the suffixes, and stores the lengths of the longest common prefixes of consecutive suffixes in SUF. Denote by
lcp(i, j) the length of the longest common prefix between u[i . .n] and u[ j . .n] (for 1 � i, j � n). Then, we set LCP[1] = −1
and, for 1 < i � n, we have:

LCP[i] = lcp
(
SUF[i − 1],SUF[i]).
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