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1. Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be a graph. We use V, E, A and § to denote
the vertex set, the edge set, the maximum degree and the minimum degree of G, respectively. Surfaces in this paper are
compact, connected two manifolds without boundary. All embeddings considered in this paper are 2-cell embeddings.

A k-total-coloring of a graph G is a coloring of V U E using k colors such that no two adjacent or incident elements
receive the same color. A graph G is k-total-colorable if it admits a k-total-coloring. The total chromatic number x"(G) of G
is the smallest integer k such that G is a k-total-colorable. Clearly, x”(G) > A + 1. Behzad and Vizing posed independently
the famous conjecture, known as the Total Coloring Conjecture (TCC).

Conjecture. For any graph G, A+1< x"(G) < A+ 2.

This conjecture was verified by Rosenfeld [7] and Vijayaditya [9] for A =3 and by Kostochka [4,5] for A < 5. For planar
graphs, the only case of TCC that still open is A = 6. Borodin [1] confirmed TCC for planar graphs with A > 9. By applying
the Four Color Theorem, this result was extended to A > 8 (see [3]). In 1999, Sanders and Zhao [8] improved it to A > 7.
In this paper, we strengthen this result and get the following theorem.

Theorem 1. Let G be a graph embedded in a surface X of Euler characteristic x (X) > 0.If A > 7, then x"(G) < A + 2.
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Theorem 1 also improves the result in [12] that x”(G) = A + 2 if G is a graph which can be embedded in a surface ¥
of Euler characteristic x (X) > 0 and A > 8. Thus, for graphs embedded in a surface X of Euler characteristic y (X) > 0, the
only open case of TCC is also A = 6. Some related results can be found in [2,6,10,11].

2. The proof of Theorem 1

For convenience, we introduce the following notations. Let G = (V, E, F) be an embedded graph, where F is the face set
of G. For a vertex v of G, the degree d(v) is the number of edges incident with v, and for a face f of G, the degree d(f)
is the length of the boundary walk of f, where each cut edge is counted twice. A k-vertex, k™-vertex or a k*-vertex is a
vertex of degree k, at most k or at least k, respectively. Similarly, we can define a k-face, k~-face and a k*-face. A cycle of
length 3 is called a triangle. We use (vq, va,..., vp)-cycle (or -face) or (d(v1),d(v32),...,d(vy))-cycle (or -face) to denote
a cycle (or face) whose boundary vertices are v, va,..., vy in the clockwise order in G. Denote by n,(v) the number of
k-vertices adjacent to the vertex v, by ni(f) the number of k-vertices incident with the face f, and by fi(v) the number
of k-faces incident with the vertex v.

Now, we prove Theorem 1. In [12], it was proved x”(G) < A +2 for A > 8. So we assume A =7 in the following.
Let G = (V,E, F) be a minimal counterexample to Theorem 1 which is embedded in a surface X of Euler characteristic
x(X) >0, and with |V| + |E| as small as possible. We first show some lemmas. Note that in all figures of the paper,
vertices marked e have no edges of G incident with them other than those shown and pair of vertices marked with o can
be connected to each other, unless stated otherwise.

Lemma 1. [8] The graph G has the following properties:

(1) 3(G) = 3.

(2) Ifuv € E(G) withd(v) <4, thend(u) +d(v) > 10.

(3) Thereis no (4, 6, 7)-triangle and no (3, 7, 7)-triangle.

(4) If a 5-vertex v is incident with five triangles, then v is adjacent to at least four 7-vertices.

(5) Let v be a 5-vertex and v, be adjacent to v. If v and v, have at least two common neighbors, then at most one of them is a
5-vertex.

(6) Let v be a 5-vertex and v1 be a 6-vertex adjacent to v. If v and v, have at least two common neighbors, then none of them is a
5-vertex.

(7) If v is a 5-vertex, then the configurations of Fig. 1 are reducible.

(8) Let v be a 7-vertex and v1 be adjacent to v. If v and v have at least two common neighbors, then d(v1) > 5.

The proof of Lemma 1 can be found in [8], so we omit the details here.

Lemma 2. Let v, u be two 5-vertices. If v is adjacent to u, then there is at most one 5-vertex between v and u which is incident with
five 3-triangles.

The proof of Lemma 2 is a long, tedious case analysis, so we move it to Section 3. In the following, we will continue to
prove Theorem 1.
By Euler’s formula |V| — |E| + |F| = x(X), we have

3 (dv) —4) + > (d(f) — 4) = —4(V| - |E| + |F|) = —4x () <O. (1)

veV feF

We define c(x) to be the initial charge. Let c(x) =d(x) — 4 for each xe VUF. So D>,y rc(¥) = —4x(X) <O0. In the
following, we will assign a new charge denoted by ¢’(x) to each x € V UF according to the discharging rules. Since our rules
only move charges around and do not affect the sum, we have

Y. W= ) c@=-4x(2)<0. (2)
xeVUF xeVUF
T-v 6-v 7-v
7-v 7-v 7-v 7-v 7-v 6-v
v v v
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Fig. 1. Some reducible configurations.
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