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A k-total-coloring of a graph G is a coloring of V (G) ∪ E(G) using k colors such that no
two adjacent or incident elements receive the same color. A graph G is k-total-colorable
if it admits a k-total-coloring. In this paper, it is proved that any graph G which can be
embedded in a surface Σ of Euler characteristic χ(Σ) � 0 is (�(G) + 2)-total-colorable if
�(G)� 7, where �(G) denotes the maximum degree of G .

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. Let G be a graph. We use V , E , � and δ to denote
the vertex set, the edge set, the maximum degree and the minimum degree of G , respectively. Surfaces in this paper are
compact, connected two manifolds without boundary. All embeddings considered in this paper are 2-cell embeddings.

A k-total-coloring of a graph G is a coloring of V ∪ E using k colors such that no two adjacent or incident elements
receive the same color. A graph G is k-total-colorable if it admits a k-total-coloring. The total chromatic number χ ′′(G) of G
is the smallest integer k such that G is a k-total-colorable. Clearly, χ ′′(G) � � + 1. Behzad and Vizing posed independently
the famous conjecture, known as the Total Coloring Conjecture (TCC).

Conjecture. For any graph G, � + 1 � χ ′′(G) � � + 2.

This conjecture was verified by Rosenfeld [7] and Vijayaditya [9] for � = 3 and by Kostochka [4,5] for � � 5. For planar
graphs, the only case of TCC that still open is � = 6. Borodin [1] confirmed TCC for planar graphs with � � 9. By applying
the Four Color Theorem, this result was extended to � � 8 (see [3]). In 1999, Sanders and Zhao [8] improved it to � � 7.
In this paper, we strengthen this result and get the following theorem.

Theorem 1. Let G be a graph embedded in a surface Σ of Euler characteristic χ(Σ) � 0. If �� 7, then χ ′′(G) �� + 2.

✩ This work is supported by NSFC (11271006, 10971121, 11271341, 11201440) and the Fundamental Research Funds for the Central Universities
(201113007) of China.

* Corresponding author.
E-mail address: jlwu@sdu.edu.cn (J. Wu).

0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.04.030

http://dx.doi.org/10.1016/j.tcs.2013.04.030
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:jlwu@sdu.edu.cn
http://dx.doi.org/10.1016/j.tcs.2013.04.030
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.04.030&domain=pdf


2 H. Wang et al. / Theoretical Computer Science 518 (2014) 1–9

Theorem 1 also improves the result in [12] that χ ′′(G) = � + 2 if G is a graph which can be embedded in a surface Σ

of Euler characteristic χ(Σ) � 0 and � � 8. Thus, for graphs embedded in a surface Σ of Euler characteristic χ(Σ) � 0, the
only open case of TCC is also � = 6. Some related results can be found in [2,6,10,11].

2. The proof of Theorem 1

For convenience, we introduce the following notations. Let G = (V , E, F ) be an embedded graph, where F is the face set
of G . For a vertex v of G , the degree d(v) is the number of edges incident with v , and for a face f of G , the degree d( f )
is the length of the boundary walk of f , where each cut edge is counted twice. A k-vertex, k−-vertex or a k+-vertex is a
vertex of degree k, at most k or at least k, respectively. Similarly, we can define a k-face, k−-face and a k+-face. A cycle of
length 3 is called a triangle. We use (v1, v2, . . . , vn)-cycle (or -face) or (d(v1),d(v2), . . . ,d(vn))-cycle (or -face) to denote
a cycle (or face) whose boundary vertices are v1, v2, . . . , vn in the clockwise order in G . Denote by nk(v) the number of
k-vertices adjacent to the vertex v , by nk( f ) the number of k-vertices incident with the face f , and by fk(v) the number
of k-faces incident with the vertex v .

Now, we prove Theorem 1. In [12], it was proved χ ′′(G) � � + 2 for � � 8. So we assume � = 7 in the following.
Let G = (V , E, F ) be a minimal counterexample to Theorem 1 which is embedded in a surface Σ of Euler characteristic
χ(Σ) � 0, and with |V | + |E| as small as possible. We first show some lemmas. Note that in all figures of the paper,
vertices marked • have no edges of G incident with them other than those shown and pair of vertices marked with ◦ can
be connected to each other, unless stated otherwise.

Lemma 1. [8] The graph G has the following properties:

(1) δ(G) � 3.
(2) If uv ∈ E(G) with d(v) � 4, then d(u) + d(v) � 10.
(3) There is no (4,6,7)-triangle and no (3,7,7)-triangle.
(4) If a 5-vertex v is incident with five triangles, then v is adjacent to at least four 7-vertices.
(5) Let v be a 5-vertex and v1 be adjacent to v. If v and v1 have at least two common neighbors, then at most one of them is a

5-vertex.
(6) Let v be a 5-vertex and v1 be a 6-vertex adjacent to v. If v and v1 have at least two common neighbors, then none of them is a

5-vertex.
(7) If v is a 5-vertex, then the configurations of Fig. 1 are reducible.
(8) Let v be a 7-vertex and v1 be adjacent to v. If v and v1 have at least two common neighbors, then d(v1) � 5.

The proof of Lemma 1 can be found in [8], so we omit the details here.

Lemma 2. Let v, u be two 5-vertices. If v is adjacent to u, then there is at most one 5-vertex between v and u which is incident with
five 3-triangles.

The proof of Lemma 2 is a long, tedious case analysis, so we move it to Section 3. In the following, we will continue to
prove Theorem 1.

By Euler’s formula |V | − |E| + |F | = χ(Σ), we have
∑
v∈V

(
d(v) − 4

) +
∑
f ∈F

(
d( f ) − 4

) = −4
(|V | − |E| + |F |) = −4χ(Σ) � 0. (1)

We define c(x) to be the initial charge. Let c(x) = d(x) − 4 for each x ∈ V ∪ F . So
∑

x∈V ∪F c(x) = −4χ(Σ) � 0. In the
following, we will assign a new charge denoted by c′(x) to each x ∈ V ∪ F according to the discharging rules. Since our rules
only move charges around and do not affect the sum, we have

∑
x∈V ∪F

c′(x) =
∑

x∈V ∪F

c(x) = −4χ(Σ) � 0. (2)

Fig. 1. Some reducible configurations.
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