Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Total coloring of embedded graphs with maximum degree at least seven ${}^{\bigstar}$

Huijuan Wang^a, Bin Liu^b, Jianliang Wu^{a,*}, Guizhen Liu^a

^a School of Mathematics, Shandong University, Jinan, 250100, China

^b Department of Mathematics, Ocean University of China, Qingdao, 266100, China

ARTICLE INFO

Article history: Received 1 August 2012 Accepted 27 April 2013 Communicated by D.-Z. Du

Keywords: Surface Total coloring Euler characteristic

ABSTRACT

A *k*-total-coloring of a graph *G* is a coloring of $V(G) \cup E(G)$ using *k* colors such that no two adjacent or incident elements receive the same color. A graph *G* is *k*-total-colorable if it admits a *k*-total-coloring. In this paper, it is proved that any graph *G* which can be embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \ge 0$ is $(\Delta(G) + 2)$ -total-colorable if $\Delta(G) \ge 7$, where $\Delta(G)$ denotes the maximum degree of *G*.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

All graphs considered in this paper are simple, finite and undirected. Let *G* be a graph. We use *V*, *E*, Δ and δ to denote the vertex set, the edge set, the maximum degree and the minimum degree of *G*, respectively. *Surfaces* in this paper are compact, connected two manifolds without boundary. All embeddings considered in this paper are 2-cell embeddings.

A *k*-total-coloring of a graph *G* is a coloring of $V \cup E$ using *k* colors such that no two adjacent or incident elements receive the same color. A graph *G* is *k*-total-colorable if it admits a *k*-total-coloring. The total chromatic number $\chi''(G)$ of *G* is the smallest integer *k* such that *G* is a *k*-total-colorable. Clearly, $\chi''(G) \ge \Delta + 1$. Behzad and Vizing posed independently the famous conjecture, known as the Total Coloring Conjecture (**TCC**).

Conjecture. For any graph G, $\Delta + 1 \leq \chi''(G) \leq \Delta + 2$.

This conjecture was verified by Rosenfeld [7] and Vijayaditya [9] for $\Delta = 3$ and by Kostochka [4,5] for $\Delta \leq 5$. For planar graphs, the only case of **TCC** that still open is $\Delta = 6$. Borodin [1] confirmed **TCC** for planar graphs with $\Delta \ge 9$. By applying the Four Color Theorem, this result was extended to $\Delta \ge 8$ (see [3]). In 1999, Sanders and Zhao [8] improved it to $\Delta \ge 7$. In this paper, we strengthen this result and get the following theorem.

Theorem 1. Let *G* be a graph embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \ge 0$. If $\Delta \ge 7$, then $\chi''(G) \le \Delta + 2$.

* Corresponding author.

 $^{^{*}}$ This work is supported by NSFC (11271006, 10971121, 11271341, 11201440) and the Fundamental Research Funds for the Central Universities (201113007) of China.

E-mail address: jlwu@sdu.edu.cn (J. Wu).

^{0304-3975/\$ –} see front matter @ 2013 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.tcs.2013.04.030

Theorem 1 also improves the result in [12] that $\chi''(G) = \Delta + 2$ if *G* is a graph which can be embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \ge 0$ and $\Delta \ge 8$. Thus, for graphs embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \ge 0$, the only open case of **TCC** is also $\Delta = 6$. Some related results can be found in [2,6,10,11].

2. The proof of Theorem 1

For convenience, we introduce the following notations. Let G = (V, E, F) be an embedded graph, where F is the face set of G. For a vertex v of G, the *degree* d(v) is the number of edges incident with v, and for a face f of G, the *degree* d(f)is the length of the boundary walk of f, where each cut edge is counted twice. A *k*-vertex, k^- -vertex or a k^+ -vertex is a vertex of degree k, at most k or at least k, respectively. Similarly, we can define a *k*-face, k^- -face and a k^+ -face. A cycle of length 3 is called a *triangle*. We use (v_1, v_2, \ldots, v_n) -cycle (or -face) or $(d(v_1), d(v_2), \ldots, d(v_n))$ -cycle (or -face) to denote a cycle (or face) whose boundary vertices are v_1, v_2, \ldots, v_n in the clockwise order in G. Denote by $n_k(v)$ the number of *k*-vertices adjacent to the vertex v, by $n_k(f)$ the number of *k*-vertices incident with the face f, and by $f_k(v)$ the number of *k*-faces incident with the vertex v.

Now, we prove Theorem 1. In [12], it was proved $\chi''(G) \leq \Delta + 2$ for $\Delta \geq 8$. So we assume $\Delta = 7$ in the following. Let G = (V, E, F) be a minimal counterexample to Theorem 1 which is embedded in a surface Σ of Euler characteristic $\chi(\Sigma) \geq 0$, and with |V| + |E| as small as possible. We first show some lemmas. Note that in all figures of the paper, vertices marked • have no edges of G incident with them other than those shown and pair of vertices marked with \circ can be connected to each other, unless stated otherwise.

Lemma 1. [8] The graph *G* has the following properties:

- (1) $\delta(G) \ge 3$.
- (2) If $uv \in E(G)$ with $d(v) \leq 4$, then $d(u) + d(v) \geq 10$.
- (3) There is no (4, 6, 7)-triangle and no (3, 7, 7)-triangle.
- (4) If a 5-vertex v is incident with five triangles, then v is adjacent to at least four 7-vertices.
- (5) Let v be a 5-vertex and v_1 be adjacent to v. If v and v_1 have at least two common neighbors, then at most one of them is a 5-vertex.
- (6) Let v be a 5-vertex and v_1 be a 6-vertex adjacent to v. If v and v_1 have at least two common neighbors, then none of them is a 5-vertex.
- (7) If v is a 5-vertex, then the configurations of Fig. 1 are reducible.
- (8) Let v be a 7-vertex and v_1 be adjacent to v. If v and v_1 have at least two common neighbors, then $d(v_1) \ge 5$.

The proof of Lemma 1 can be found in [8], so we omit the details here.

Lemma 2. Let v, u be two 5-vertices. If v is adjacent to u, then there is at most one 5-vertex between v and u which is incident with five 3-triangles.

The proof of Lemma 2 is a long, tedious case analysis, so we move it to Section 3. In the following, we will continue to prove Theorem 1.

By Euler's formula $|V| - |E| + |F| = \chi(\Sigma)$, we have

$$\sum_{\nu \in V} (d(\nu) - 4) + \sum_{f \in F} (d(f) - 4) = -4(|V| - |E| + |F|) = -4\chi(\Sigma) \leq 0.$$
(1)

We define c(x) to be the initial charge. Let c(x) = d(x) - 4 for each $x \in V \cup F$. So $\sum_{x \in V \cup F} c(x) = -4\chi(\Sigma) \leq 0$. In the following, we will assign a new charge denoted by c'(x) to each $x \in V \cup F$ according to the discharging rules. Since our rules only move charges around and do not affect the sum, we have

$$\sum_{x \in V \cup F} c'(x) = \sum_{x \in V \cup F} c(x) = -4\chi(\Sigma) \leqslant 0.$$
⁽²⁾

Fig. 1. Some reducible configurations.

Download English Version:

https://daneshyari.com/en/article/436663

Download Persian Version:

https://daneshyari.com/article/436663

Daneshyari.com