
Theoretical Computer Science 518 (2014) 10–21

Contents lists available at SciVerse ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Constant-competitive tree node assignment

Yong Zhang a,b,∗,1, Francis Y.L. Chin b,2, Hing-Fung Ting b,3

a College of Mathematics and Computer Science, Hebei University, China
b Department of Computer Science, The University of Hong Kong, Hong Kong

a r t i c l e i n f o a b s t r a c t

Article history:
Received 15 September 2010
Received in revised form 1 March 2013
Accepted 8 May 2013
Communicated by T. Erlebach

Keywords:
Online algorithms
Tree node assignment
Competitive ratio

In this paper, we study the online tree node assignment problem, which is a generalization
of the well studied OVSF code assignment problem. Assigned nodes in a complete binary
tree must follow the rule that each leaf-to-root path must contain at most one assigned
node. At times, it is necessary to swap assigned nodes with unassigned nodes in order to
accommodate some new node assignment. The target of this problem is to minimize the
number of swaps in satisfying a sequence of node assignments and releases.
This problem is fundamental, not only to the OVSF code assignment, but also to other
applications, such as buddy memory allocation and hypercube subcube allocation. All the
previous solutions to this problem are based on a sorted and compact configuration by
assigning the nodes linearly and level by level, ignoring the intrinsic tree property in their
assignments.
Our contributions are: (1) give the concept of safe assignment, which is proved to be
unique for any fixed set of node-assignment requests; (2) an 8-competitive algorithm
by holding the safe assignment; and (3) an improved 6-competitive variant of this
algorithm. Our algorithms are simple and easy to implement and our contributions
represent meaningful improvements over recent results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The problem we study in this paper involves the assignment and release of nodes in a complete binary tree when faced
with a sequence of requests for either an assignment of a node at specified level of the tree, or a release of an assigned
node of the tree. The only rule which dictates the assignments/releases is that the tree remains in a legal configuration where
no two assigned nodes lie on a single path from the root to a leaf. Fig. 1 is an example of a legal tree with assigned nodes
darkened and marked as c, d, e, g and i.

The requirement of our problem is to accommodate each request if at all possible and, in order to accommodate a new
request, it might be necessary to swap nodes to “make room” for the new request, where swap means changing the position
of an assigned node with an unassigned node at the same level. For example, in Fig. 1, to accommodate a request for node
assignment at level 2, we could first change the assignment by swapping node c with node f and then satisfy the request
with the assignment of node a at level 2. Alternatively, we could swap node g and node b and then assign node j at level
2 to satisfy the request. Since each swap represents processing overhead, we have the optimization objective of designing
algorithms to solve this tree assignment problem so as to minimize the number of swaps.

* Corresponding author at: Department of Computer Science, The University of Hong Kong, Hong Kong.
E-mail addresses: yzhang@cs.hku.hk (Y. Zhang), chin@cs.hku.hk (F.Y.L. Chin), hfting@cs.hku.hk (H.-F. Ting).

1 Research supported by NSFC (No. 11171086) and HKU Small Project Funding 7176218.
2 Research supported by HK RGC grant HKU-711709E.
3 Research supported by HKU Small Project Funding 7176115.

0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.05.014

http://dx.doi.org/10.1016/j.tcs.2013.05.014
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:yzhang@cs.hku.hk
mailto:chin@cs.hku.hk
mailto:hfting@cs.hku.hk
http://dx.doi.org/10.1016/j.tcs.2013.05.014
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.05.014&domain=pdf


Y. Zhang et al. / Theoretical Computer Science 518 (2014) 10–21 11

Fig. 1. Example of legal configuration, solid circles are assigned nodes.

Table 1
Application-specific problems and how the node and the swap are interpreted.

Problem Node at level l Swap

OVSF code assignment Code of frequency bandwidth 2l Code reassignment
Buddy memory allocation Memory block of size 2l Memory reallocation
Hypercube subcube allocation Subcube of 2l processors Subcube migration

As it turns out, a solution to our problem, given its fundamental formulation, can be used to solve a variety of
application-specific problems including the Orthogonal Variable Spreading Factor (OVSF) code assignment problem [2,4,8,
11,14], the buddy memory allocation problem [1,6,12,13] and the hypercube subcube allocation problem [7]. The main
difference between these problems is how the node at level l and the swap operation are interpreted (see Table 1).

As with other scheduling-type problems, there naturally arises an off-line and an online version of this problem. In the
off-line version, the sequence of requests is made known to the algorithm at the outset, whereas in the online version,
the algorithm must process each request without the benefit of any information about future requests. The off-line version
of the tree node assignment problem is NP-hard [9], so the approach is to produce a good heuristic algorithm, whose
performance is measured by the ratio of the cost of the heuristic algorithm to the cost of an optimal off-line algorithm. The
ratio in case of the online problem (the off-line problem) is called the competitive ratio (approximation ratio).

There is a variety of ways to define the cost of an algorithm. For example, cost could simply be the total number
of assignments and swaps done by the algorithm, with zero cost for each node release. This cost definition is justified
since, for most applications, it is expensive to set up a node assignment while there is little cost associated with a node
release (e.g. terminating communications, freeing some memory, or releasing the hypercube subcube for another task) and
a swap can be considered equivalent to a node assignment plus a node release. In the actual application, higher level node
assignment/swap for buddy memory allocation and hypercube subcube allocation might be more costly because larger size
of the memory blocks and subcube are involved. However, a uniform cost for each level node assignment/swap is justified
if the data transfer cost is considered to be negligible when compared with the high setup cost.

In this paper, we focus on the online problem and we define cost to be the total number of assignments and swaps done
by the algorithm. For the online problem, Erlebach et al. [8] gave an O (h)-competitive algorithm, where h is the height of
the tree, and proved a general lower bound on the competitive ratio of at least 1.5. With resource augmentation in the form
of using a bigger tree, it is possible to have constant-competitive algorithms. Erlebach et al. [8] first gave a 4-competitive
algorithm with two trees, Chin et al. [5] gave a 5-competitive algorithm with 9/8 trees. By balancing the performance
ratio and resource augmentation, Chan et al. [3] gave a 2-competitive algorithm with 3h/8 + 2 trees; a 8/3-competitive
algorithm with 11/4 trees; and a general (4/3 + α)-competitive algorithm with (11/4 + 4/(3α)) trees, for any 0 < α � 4/3.
Without resource augmentation, Forisek et al. [10] first gave a constant-competitive algorithm, but without deriving the
exact value of the constant. According to their scheme, each node release may still cost O (h) swaps, but with constant
value potential defined on some nodes, a constant-competitive algorithm could be achieved. A 10-competitive algorithm [4]
was also derived based on a lazy approach to group assigned nodes at some consecutive levels together. Miyazaki and
Okamoto [14] introduced a 7-competitive algorithm and proved a lower bound of 2 on the competitive ratio.

All of the previous work has been based on a sorted and compact legal configuration, where all assigned nodes are
sorted according to their levels in non-decreasing order from left to right in the tree and are pushed to the left as much as
possible. In these methods, nodes are “packed” level by level, ignoring the intrinsic tree property in their assignments. By
studying properties for a “good” legal configuration, one of our main contributions is to define a novel configuration, called
dense configurations (to be defined in Section 2) which is not only a generalization of the sorted and compact configuration,
but can fully utilize the capacity of the tree and allow new requests to be served easily. In fact, the sorted and compact
configuration is one of two extreme cases of the dense configurations that require swaps in order to maintain the “dense”
property. In this paper, we define a safe configuration, which is dense and easy to maintain, and does not have the problem
of high cost in the sorted and compact configuration.



Download English Version:

https://daneshyari.com/en/article/436664

Download Persian Version:

https://daneshyari.com/article/436664

Daneshyari.com

https://daneshyari.com/en/article/436664
https://daneshyari.com/article/436664
https://daneshyari.com

