
Theoretical Computer Science 518 (2014) 80–95

Contents lists available at ScienceDirect

Theoretical Computer Science

www.elsevier.com/locate/tcs

Regular and context-free pattern languages over small
alphabets ✩

Daniel Reidenbach a, Markus L. Schmid b,∗
a Department of Computer Science, Loughborough University, Loughborough, Leicestershire, LE11 3TU, United Kingdom
b Fachbereich 4 – Abteilung Informatik, Universität Trier, D-54296 Trier, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 13 November 2012
Accepted 31 July 2013
Communicated by J. Karhumaki

Keywords:
Pattern languages
Regular languages
Context-free languages

Pattern languages are generalisations of the copy language, which is a standard textbook
example of a context-sensitive and non-context-free language. In this work, we investigate
a counter-intuitive phenomenon: with respect to alphabets of size 2 and 3, pattern
languages can be regular or context-free in an unexpected way. For this regularity and
context-freeness of pattern languages, we give several sufficient and necessary conditions
and improve known results.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Within the scope of this paper, a pattern is a finite sequence of terminal symbols and variables, taken from two disjoint
alphabets Σ and X . We say that such a pattern α generates a word w if w can be obtained from α by substituting
arbitrary words of terminal symbols for all variables in α, where, for any variable, the substitution word must be identical
for all of its occurrences in α. More formally, a substitution is therefore a terminal-preserving morphism, i.e., a morphism
σ : (Σ ∪ X)∗ → Σ∗ that satisfies σ(a) = a for every a ∈ Σ . The pattern language L(α) is then simply the set of all words that
can be obtained from α by arbitrary substitutions. For example, the language generated by α1 := x1x1abax2 (where Σ :=
{a,b} and X ⊃ {x1, x2}) is the set of all words over {a,b} that have any square as a prefix, an arbitrary suffix and the factor
aba in between. Hence, e.g., w1 := abbabbabaaa and w2 := bbaba are included in L(α1), whereas w3 := abbababb
and w4 := bbbabaaa are not.

Pattern languages were introduced by Angluin [1] in 1980 in order to formalise the process of computing commonali-
ties of words in some given set. Her original definition disallows the substitution of the empty word for the variables, and
therefore these languages are also referred to as nonerasing pattern languages (or NE-pattern languages for short). This no-
tion of pattern languages was soon afterwards extended by Shinohara [20], who included the empty word as an admissible
substitution word, leading to the definition of extended or erasing pattern languages (or E-pattern languages for short). Thus,
in the above example, w2 is contained in the E-pattern language, but not in the NE-pattern language of α1. As revealed
by numerous studies, the small difference between the definitions of NE- and E-pattern languages entails substantial differ-
ences between some of the properties of the resulting (classes of) formal languages (see, e.g., Mateescu and Salomaa [14]
for a survey).

Pattern languages have not only been intensively studied within the scope of inductive inference (see, e.g., Lange and
Wiehagen [12], Rossmanith and Zeugmann [19], Reidenbach [17] and, for a survey, Ng and Shinohara [15]), but their

✩ A preliminary version [18] of this paper was presented at the conference DLT 2012.

* Corresponding author.
E-mail addresses: D.Reidenbach@lboro.ac.uk (D. Reidenbach), MSchmid@uni-trier.de (M.L. Schmid).

0304-3975/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.tcs.2013.07.035

http://dx.doi.org/10.1016/j.tcs.2013.07.035
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/tcs
mailto:D.Reidenbach@lboro.ac.uk
mailto:MSchmid@uni-trier.de
http://dx.doi.org/10.1016/j.tcs.2013.07.035
http://crossmark.crossref.org/dialog/?doi=10.1016/j.tcs.2013.07.035&domain=pdf


D. Reidenbach, M.L. Schmid / Theoretical Computer Science 518 (2014) 80–95 81

properties are closely connected to a variety of fundamental problems in computer science and discrete mathematics,
such as for (un-)avoidable patterns (cf. Jiang et al. [10]), word equations (cf. Mateescu and Salomaa [13]), the ambiguity
of morphisms (cf. Freydenberger et al. [7]), equality sets (cf. Harju and Karhumäki [8]) and extended regular expressions (cf.
Câmpeanu et al. [4]). Therefore, quite a number of basic questions for pattern languages are still open or have been resolved
just recently (see, e.g., Freydenberger and Reidenbach [6], Bremer and Freydenberger [3]).

If a pattern contains each of its variables once, then this pattern can be interpreted as a regular expression, and therefore
its language is regular. In contrast to this, if a pattern has at least one variable with multiple occurrences, then its languages
is a variant of the well-known copy language {xx | x ∈ Σ∗}, which for |Σ | � 2 is a standard textbook example of a context-
sensitive and non-context-free language. Nevertheless, there are some well-known example patterns of the latter type that
generate regular languages. For instance, the NE-pattern language of α2 := x1x2x2x3 is regular for |Σ | = 2, since squares are
unavoidable for binary alphabets, which means that the language is co-finite. Surprisingly, for terminal alphabets of size 2
and 3, there are even certain E- and NE-pattern languages that are context-free but not regular. This recent insight is due
to Jain et al. [9] and solves a longstanding open problem.

It is the purpose of our paper to further investigate this counter-intuitive existence of languages that appear to be
variants of the copy language, but are nevertheless regular or context-free. Thus, we wish to establish criteria where the
seemingly high complexity of a pattern does not translate into a high complexity of its language. Since, as demonstrated by
Jain et al., this phenomenon does not occur for E-pattern languages if the pattern does not contain any terminal symbols or
if the size of the terminal alphabet is at least 4, our investigations focus on patterns with terminal symbols and on small
alphabets of size 2 or 3.

2. Definitions and known results

Let N := {1,2,3, . . .} and let N0 := N ∪ {0}. For an arbitrary alphabet A, a string (over A) is a finite sequence of symbols
from A, and ε stands for the empty string. The notation A+ denotes the set of all non-empty strings over A, and A∗ :=
A+ ∪ {ε}. For the concatenation of two strings w1, w2 we write w1 · w2 or simply w1 w2. We say that a string v ∈ A∗ is a
factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such that w = u1 · v · u2. If u1 or u2 is the empty string, then v is a prefix
(or a suffix, respectively) of w . The notation |K | stands for the size of a set K or the length of a string K .

If we wish to refer to the symbol at a certain position j, 1 � j � n, in a string w = a1 ·a2 · . . . ·an , ai ∈ A, 1 � i � n, then
we use w[ j] := a j and if the length of a string is unknown, then we denote its last symbol by w[−] := w[|w|]. Furthermore,
for each j, j′ , 1 � j < j′ � |w|, let w[ j, j′] := a j · a j+1 · . . . · a j′ and w[ j,−] := w[ j, |w|].

For any alphabets A, B , a morphism is a function h : A∗ → B∗ that satisfies h(v w) = h(v)h(w) for all v, w ∈ A∗; h is said
to be nonerasing if and only if, for every a ∈ A, h(a) �= ε. Let Σ be a finite alphabet of so-called terminal symbols and X a
countably infinite set of variables with Σ ∩ X = ∅. We normally assume X := {x1, x2, x3, . . .}. A pattern is a non-empty string
over Σ ∪ X , a terminal-free pattern is a non-empty string over X and a word is a string over Σ . For any pattern α, we refer
to the set of variables in α as var(α) and for any x ∈ var(α), |α|x denotes the number of occurrences of x in α. A morphism
h : (Σ ∪ X)∗ → Σ∗ is called a substitution if h(a) = a for every a ∈ Σ .

Definition 1. Let α ∈ (Σ ∪ X)∗ be a pattern. The E-pattern language of α is defined by LE,Σ (α) := {h(α) | h : (Σ ∪ X)∗ →
Σ∗ is a substitution}. The NE-pattern language of α is defined by LNE,Σ (α) := {h(α) | h : (Σ ∪ X)∗ → Σ∗ is a nonerasing
substitution}.

We denote the class of regular languages, context-free languages, E-pattern languages over Σ and NE-pattern languages
over Σ by REG, CF, E-PATΣ and NE-PATΣ , respectively. We use regular expressions as they are commonly defined (see, e.g.,
Yu [22]) and for any regular expression r, L(r) denotes the language described by r.

We recapitulate regular and block-regular patterns as defined by Shinohara [21] and Jain et al. [9]. A pattern α is a
regular pattern if, for every x ∈ var(α), |α|x = 1. Every factor of variables of α that is delimited by terminal symbols is
called a variable block. More precisely, for every i, j, 1 � i � j � |α|, α[i, j] is a variable block if and only if α[k] ∈ X ,
i � k � j, α[i − 1] ∈ Σ or i = 1 and α[ j + 1] ∈ Σ or j = |α|. A pattern α is block-regular if in every variable block of α there
occurs at least one variable x with |α|x = 1. Let Z ∈ {E,NE}. The class of Z-pattern languages defined by regular patterns
and block-regular patterns are denoted by Z-PATΣ,reg and Z-PATΣ,b-reg, respectively. To avoid any confusion, we explicitly
mention that the term regular pattern always refers to a pattern with the syntactical property of being a regular pattern
and a regular E- or NE-pattern language is a pattern language that is regular, but that is not necessarily given by a regular
pattern.

In order to prove some of the technical claims in this paper, the following two versions of the pumping lemma for
regular languages as stated by Yu [22] shall be used.

Pumping Lemma 1. Let L ⊆ Σ∗ be a regular language. Then there is a constant n, depending on L, such that for every w ∈ L with
|w| � n there exist x, y, z ∈ Σ∗ such that w = xyz and

1. |xy| � n,



Download	English	Version:

https://daneshyari.com/en/article/436669

Download	Persian	Version:

https://daneshyari.com/article/436669

Daneshyari.com

https://daneshyari.com/en/article/436669
https://daneshyari.com/article/436669
https://daneshyari.com/

